•  223
    Worlds in the Everett interpretation
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4): 637-661. 2002.
    This is a discussion of how we can understand the world-view given to us by the Everett interpretation of quantum mechanics, and in particular the role played by the concept of 'world'. The view presented is that we are entitled to use 'many-worlds' terminology even if the theory does not specify the worlds in the formalism; this is defended by means of an extensive analogy with the concept of an 'instant' or moment of time in relativity, with the lack of a preferred foliation of spacetime being…Read more
  •  286
    The logic of the past hypothesis
    In Barry Loewer, Brad Weslake & Eric B. Winsberg (eds.), The Probability Map of the Universe: Essays on David Albert’s _time and Chance_, Harvard University Press. pp. 76-109. 2023.
    I attempt to get as clear as possible on the chain of reasoning by which irreversible macrodynamics is derivable from time-reversible microphysics, and in particular to clarify just what kinds of assumptions about the initial state of the universe, and about the nature of the microdynamics, are needed in these derivations. I conclude that while a “Past Hypothesis” about the early Universe does seem necessary to carry out such derivations, that Hypothesis is not correctly understood as a constrai…Read more
  •  302
    Branching and Uncertainty
    British Journal for the Philosophy of Science 59 (3): 293-305. 2008.
    Following Lewis, it is widely held that branching worlds differ in important ways from diverging worlds. There is, however, a simple and natural semantics under which ordinary sentences uttered in branching worlds have much the same truth values as they conventionally have in diverging worlds. Under this semantics, whether branching or diverging, speakers cannot say in advance which branch or world is theirs. They are uncertain as to the outcome. This same semantics ensures the truth of utteranc…Read more
  •  294
    Quantum Mechanics on Spacetime I: Spacetime State Realism
    with Christopher Gordon Timpson
    British Journal for the Philosophy of Science 61 (4): 697-727. 2010.
    What ontology does realism about the quantum state suggest? The main extant view in contemporary philosophy of physics is wave-function realism . We elaborate the sense in which wave-function realism does provide an ontological picture, and defend it from certain objections that have been raised against it. However, there are good reasons to be dissatisfied with wave-function realism, as we go on to elaborate. This motivates the development of an opposing picture: what we call spacetime state re…Read more
  •  219
    Review of Laura Ruetsche's "Interpreting quantum theories" (review)
    British Journal for the Philosophy of Science 65 (2): 425-428. 2014.
  •  159
    Decoherence and Ontology (or: How I learned to stop worrying and love FAPP)
    In Simon Saunders, Jon Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality, Oxford University Press. pp. 53--72. 2010.
    NGC 1300 (shown in figure 1) is a spiral galaxy 65 million light years from Earth.1 We have never been there, and (although I would love to be wrong about this) we will never go there; all we will ever know about NGC 1300 is what we can see of it from sixty-five million light years away, and what we can infer from our best physics. Fortunately, “what we can infer from our best physics” is actually quite a lot. To take a particular example: our best theory of galaxies tells us that that hazy glow…Read more
  •  59
    In this article, I briefly explain the quantum measurement problem and the Everett interpretation, in a way that is faithful to modern physics and yet accessible to readers without any physics training. I then consider the metaphysical lessons for ontology from quantum mechanics under the Everett interpretation. My conclusions are largely negative: I argue that very little can be said in full generality about the ontology of quantum mechanics, because quantum mechanics, like abstract classical m…Read more
  •  127
    The relativity and equivalence principles for self-gravitating systems
    In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories, Birkhauser. 2016.
    I criticise the view that the relativity and equivalence principles are consequences of the small-scale structure of the metric in general relativity, by arguing that these principles also apply to systems with non-trivial self-gravitation and hence non-trivial spacetime curvature (such as black holes). I provide an alternative account, incorporating aspects of the criticised view, which allows both principles to apply to systems with self-gravity.
  •  84
    I explore the reduction of thermodynamics to statistical mechanics by treating the former as a control theory: a theory of which transitions between states can be induced on a system by means of operations from a fixed list. I recover the results of standard thermodynamics in this framework on the assumption that the available operations do not include measurements which affect subsequent choices of operations. I then relax this assumption and use the framework to consider the vexed questions of…Read more
  •  103
    Probability in Physics: Stochastic, Statistical, Quantum
    In Alastair Wilson (ed.), Chance and Temporal Asymmetry, Oxford University Press. 2014.
    I review the role of probability in contemporary physics and the origin of probabilistic time asymmetry, beginning with the pre-quantum case but concentrating on quantum theory. I argue that quantum mechanics radically changes the pre-quantum situation and that the philosophical nature of objective probability in physics, and of probabilistic asymmetry in time, is dependent on the correct resolution of the quantum measurement problem.
  •  260
    An investigation is made into how the foundations of statistical mechanics are affected once we treat classical mechanics as an approximation to quantum mechanics in certain domains rather than as a theory in its own right; this is necessary if we are to understand statistical-mechanical systems in our own world. Relevant structural and dynamical differences are identified between classical and quantum mechanics (partly through analysis of technical work on quantum chaos by other authors). These…Read more
  •  146
    An examination is made of the way in which particles emerge from linear, bosonic, massive quantum field theories. Two different constructions of the one-particle subspace of such theories are given, both illustrating the importance of the interplay between the quantum-mechanical linear structure and the classical one. Some comments are made on the Newton-Wigner representation of one-particle states, and on the relationship between the approach of this paper and those of Segal, and of Haag and Ru…Read more
  •  64
    I give a brief account of the way in which thermodynamics and statistical mechanics actually work as contemporary scientific theories, and in particular of what statistical mechanics contributes to thermodynamics over and above any supposed underpinning of the latter's general principles. In doing so, I attempt to illustrate that statistical mechanics should not be thought of wholly or even primarily as itself a foundational project for thermodynamics, and that conceiving of it this way potentia…Read more
  •  142
    Many Worlds?: Everett, Quantum Theory, & Reality (edited book)
    with Simon Saunders, Jonathan Barrett, and Adrian Kent
    Oxford University Press UK. 2010.
    What would it mean to apply quantum theory, without restriction and without involving any notion of measurement and state reduction, to the whole universe? What would realism about the quantum state then imply? This book brings together an illustrious team of philosophers and physicists to debate these questions. The contributors broadly agree on the need, or aspiration, for a realist theory that unites micro- and macro-worlds. But they disagree on what this implies. Some argue that if unitary q…Read more
  •  317
    Taking particle physics seriously: A critique of the algebraic approach to quantum field theory
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (2): 116-125. 2010.
    I argue against the currently prevalent view that algebraic quantum field theory (AQFT) is the correct framework for philosophy of quantum field theory and that “conventional” quantum field theory (CQFT), of the sort used in mainstream particle physics, is not suitable for foundational study. In doing so, I defend that position that AQFT and CQFT should be understood as rival programs to resolve the mathematical and physical pathologies of renormalization theory, and that CQFT has succeeded in t…Read more
  •  117
    An extended analysis is given of the program, originally suggested by Deutsch, of solving the probability problem in the Everett interpretation by means of decision theory. Deutsch's own proof is discussed, and alternatives are presented which are based upon different decision theories and upon Gleason's Theorem. It is argued that decision theory gives Everettians most or all of what they need from `probability'. Contact is made with Lewis's Principal Principle linking subjective credence with o…Read more
  •  100
    I investigate the consequences for semantics, and in particular for the semantics of tense, if time is assumed to have a branching structure not out of metaphysical necessity (to solve some philosophical problem) but just as a contingent physical fact, as is suggested by a currently-popular approach to the interpretation of quantum mechanics.
  •  50
    Using the parametrised representation of field theory I demonstrate that in both local and global cases, internal and spacetime symmetries can be treated precisely on a par, so that gravitational theories may be regarded as gauge theories in a completely standard sense.
  •  66
    Decoherence is widely felt to have something to do with the quantum measurement problem, but getting clear on just what is made diffcult by the fact that the "measurement problem", as traditionally presented in foundational and philosophical discussions, has become somewhat disconnected from the conceptual problems posed by real physics. This, in turn, is because quantum mechanics as discussed in textbooks and in foundational discussions has become somewhat removed from scientific practice, espe…Read more
  •  200
    Who's afraid of coordinate systems? An essay on representation of spacetime structure
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67 125-136. 2019.
    Coordinate-based approaches to physical theories remain standard in mainstream physics but are largely eschewed in foundational discussion in favour of coordinate-free differential-geometric approaches. I defend the conceptual and mathematical legitimacy of the coordinate-based approach for foundational work. In doing so, I provide an account of the Kleinian conception of geometry as a theory of invariance under symmetry groups; I argue that this conception continues to play a very substantial r…Read more
  •  122
    The Everett interpretation of quantum mechanics - better known as the Many-Worlds Theory - has had a rather uneven reception. Mainstream philosophers have scarcely heard of it, save as science fiction. In philosophy of physics it is well known but has historically been fairly widely rejected. Among physicists, it is taken very seriously indeed, arguably tied for first place in popularity with more traditional operationalist views of quantum mechanics. In this article, I provide a fairly short an…Read more
  •  40
    I contrast two possible attitudes towards a given branch of physics: as inferential, and as dynamical. I contrast these attitudes in classical statistical mechanics, in quantum mechanics, and in quantum statistical mechanics; in this last case, I argue that the quantum-mechanical and statistical-mechanical aspects of the question become inseparable. Along the way various foundational issues in statistical and quantum physics are illuminated.
  •  327
    Epistemology quantized: Circumstances in which we should come to believe in the Everett interpretation
    British Journal for the Philosophy of Science 57 (4): 655-689. 2006.
    I consider exactly what is involved in a solution to the probability problem of the Everett interpretation, in the light of recent work on applying considerations from decision theory to that problem. I suggest an overall framework for understanding probability in a physical theory, and conclude that this framework, when applied to the Everett interpretation, yields the result that that interpretation satisfactorily solves the measurement problem. Introduction What is probability? 2.1 Objective …Read more
  •  331
    Saunders and Wallace reply
    British Journal for the Philosophy of Science 59 (3): 315-317. 2008.
    A reply to a comment by Paul Tappenden (BJPS 59 (2008) pp. 307-314) on S. Saunders and D. Wallace, "Branching and Uncertainty" (BJPS 59 (2008) pp. 298-306)
  •  80
    The quantitative content of statistical mechanics
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B): 285-293. 2015.
  •  313
    Quantum probability from subjective likelihood: Improving on Deutsch's proof of the probability rule
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2): 311-332. 2007.
    I present a proof of the quantum probability rule from decision-theoretic assumptions, in the context of the Everett interpretation. The basic ideas behind the proof are those presented in Deutsch's recent proof of the probability rule, but the proof is simpler and proceeds from weaker decision-theoretic assumptions. This makes it easier to discuss the conceptual ideas involved in the proof, and to show that they are defensible.
  •  90
    More problems for Newtonian cosmology
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 57 35-40. 2017.
    I point out a radical indeterminism in potential-based formulations of Newtonian gravity once we drop the condition that the potential vanishes at infinity. This indeterminism, which is well known in theoretical cosmology but has received little attention in foundational discussions, can be removed only by specifying boundary conditions at all instants of time, which undermines the theory's claim to be fully cosmological, i.e., to apply to the Universe as a whole. A recent alternative formulatio…Read more
  •  459
    Gravity, Entropy, and Cosmology: in Search of Clarity
    British Journal for the Philosophy of Science 61 (3): 513-540. 2010.
    I discuss the statistical mechanics of gravitating systems and in particular its cosmological implications, and argue that many conventional views on this subject in the foundations of statistical mechanics embody significant confusion; I attempt to provide a clearer and more accurate account. In particular, I observe that (i) the role of gravity in entropy calculations must be distinguished from the entropy of gravity, that (ii) although gravitational collapse is entropy-increasing, this is not…Read more
  •  53
    I argue that the metaphysical import of the Aharonov-Bohm effect has been overstated: correctly understood, it does not require either rejection of gauge invariance or any novel form of nonlocality. The conclusion that it does require one or the other follows from a failure to keep track, in the analysis, of the complex scalar field to which the magnetic vector potential is coupled. Once this is recognised, the way is clear to a local account of the ontology of electrodynamics ; I sketch a possi…Read more