•  171
    Some Neural Networks Compute, Others Don't
    Neural Networks 21 (2-3): 311-321. 2008.
    I address whether neural networks perform computations in the sense of computability theory and computer science. I explicate and defend
    the following theses. (1) Many neural networks compute—they perform computations. (2) Some neural networks compute in a classical way.
    Ordinary digital computers, which are very large networks of logic gates, belong in this class of neural networks. (3) Other neural networks
    compute in a non-classical way. (4) Yet other neural networks do not perform computations.…

    Read more
  •  7
    Physical Computation: A Mechanistic Account
    Oxford University Press UK. 2015.
    Gualtiero Piccinini articulates and defends a mechanistic account of concrete, or physical, computation. A physical system is a computing system just in case it is a mechanism one of whose functions is to manipulate vehicles based solely on differences between different portions of the vehicles according to a rule defined over the vehicles. Physical Computation discusses previous accounts of computation and argues that the mechanistic account is better. Many kinds of computation are explicated, …Read more
  •  702
    Integrating psychology and neuroscience: functional analyses as mechanism sketches
    with Carl Craver
    Synthese 183 (3): 283-311. 2011.
    We sketch a framework for building a unified science of cognition. This unification is achieved by showing how functional analyses of cognitive capacities can be integrated with the multilevel mechanistic explanations of neural systems. The core idea is that functional analyses are sketches of mechanisms , in which some structural aspects of a mechanistic explanation are omitted. Once the missing aspects are filled in, a functional analysis turns into a full-blown mechanistic explanation. By thi…Read more
  •  473
    Computation vs. information processing: why their difference matters to cognitive science
    with Andrea Scarantino
    Studies in History and Philosophy of Science Part A 41 (3): 237-246. 2010.
    Since the cognitive revolution, it has become commonplace that cognition involves both computation and information processing. Is this one claim or two? Is computation the same as information processing? The two terms are often used interchangeably, but this usage masks important differences. In this paper, we distinguish information processing from computation and examine some of their mutual relations, shedding light on the role each can play in a theory of cognition. We recommend that theoris…Read more
  •  112
    The following three theses are inconsistent: (1) (Paradigmatic) connectionist systems perform computations. (2) Performing computations requires executing programs. (3) Connectionist systems do not execute programs. Many authors embrace (2). This leads them to a dilemma: either connectionist systems execute programs or they don't compute. Accordingly, some authors attempt to deny (1), while others attempt to deny (3). But as I will argue, there are compelling reasons to accept both (1) and (3). …Read more
  •  251
    The Physical Church–Turing Thesis: Modest or Bold?
    British Journal for the Philosophy of Science 62 (4): 733-769. 2011.
    This article defends a modest version of the Physical Church-Turing thesis (CT). Following an established recent trend, I distinguish between what I call Mathematical CT—the thesis supported by the original arguments for CT—and Physical CT. I then distinguish between bold formulations of Physical CT, according to which any physical process—anything doable by a physical system—is computable by a Turing machine, and modest formulations, according to which any function that is computable by a physi…Read more
  •  228
    Access denied to zombies
    Unpublished 1-13. 2008.
    According to the zombie conceivability argument, phenomenal zombies are conceivable, and hence possible, and hence physicalism is false. Critics of the conceivability argument have responded by denying either that zombies are conceivable or that they are possible. Much of the controversy hinges on how to establish and understand what is conceivable, what is possible, and the link between the two—matters that are at least as obscure and controversial as whether consciousness is physical. Becau…Read more
  •  122
    Scientific Methods Must Be Public, and Descriptive Experience Sampling Qualifies
    Journal of Consciousness Studies 18 (1): 102-117. 2011.
    I defend three main conclusions. First, whether a method is public is important, because non-public methods are scientifically illegitimate. Second, there are substantive prescriptive differences between the view that private methods are legitimate and the view that private methods are illegitimate. Third, Descriptive Experience Sam-pling is a public method
  •  275
    Neural Computation and the Computational Theory of Cognition
    with Sonya Bahar
    Cognitive Science 37 (3): 453-488. 2013.
    We begin by distinguishing computationalism from a number of other theses that are sometimes conflated with it. We also distinguish between several important kinds of computation: computation in a generic sense, digital computation, and analog computation. Then, we defend a weak version of computationalism—neural processes are computations in the generic sense. After that, we reject on empirical grounds the common assimilation of neural computation to either analog or digital computation, conclu…Read more
  •  373
    Functionalism, computationalism, and mental contents
    Canadian Journal of Philosophy 34 (3): 375-410. 2004.
    Some philosophers have conflated functionalism and computationalism. I reconstruct how this came about and uncover two assumptions that made the conflation possible. They are the assumptions that (i) psychological functional analyses are computational descriptions and (ii) everything may be described as performing computations. I argue that, if we want to improve our understanding of both the metaphysics of mental states and the functional relations between them, we should reject these assumptions…Read more
  •  182
    Computing mechanisms
    Philosophy of Science 74 (4): 501-526. 2007.
    This paper offers an account of what it is for a physical system to be a computing mechanism—a system that performs computations. A computing mechanism is a mechanism whose function is to generate output strings from input strings and (possibly) internal states, in accordance with a general rule that applies to all relevant strings and depends on the input strings and (possibly) internal states for its application. This account is motivated by reasons endogenous to the philosophy of computing, n…Read more
  •  172
    Information without truth
    with Andrea Scarantino
    Metaphilosophy 41 (3): 313-330. 2010.
    Abstract: According to the Veridicality Thesis, information requires truth. On this view, smoke carries information about there being a fire only if there is a fire, the proposition that the earth has two moons carries information about the earth having two moons only if the earth has two moons, and so on. We reject this Veridicality Thesis. We argue that the main notions of information used in cognitive science and computer science allow A to have information about the obtaining of p even when …Read more
  •  93
    This paper offers an account of what it is for a physical system to be a computing mechanism—a mechanism that performs computations. A computing mechanism is any mechanism whose functional analysis ascribes it the function of generating outputs strings from input strings in accordance with a general rule that applies to all strings. This account is motivated by reasons that are endogenous to the philosophy of computing, but it may also be seen as an application of recent literature on mechanisms…Read more
  •  1993
    The cognitive neuroscience revolution
    Synthese 193 (5): 1509-1534. 2016.
    We outline a framework of multilevel neurocognitive mechanisms that incorporates representation and computation. We argue that paradigmatic explanations in cognitive neuroscience fit this framework and thus that cognitive neuroscience constitutes a revolutionary break from traditional cognitive science. Whereas traditional cognitive scientific explanations were supposed to be distinct and autonomous from mechanistic explanations, neurocognitive explanations aim to be mechanistic through and thro…Read more
  •  329
    Information processing, computation, and cognition
    with Andrea Scarantino
    Journal of Biological Physics 37 (1): 1-38. 2011.
    Computation and information processing are among the most fundamental notions in cognitive science. They are also among the most imprecisely discussed. Many cognitive scientists take it for granted that cognition involves computation, information processing, or both – although others disagree vehemently. Yet different cognitive scientists use ‘computation’ and ‘information processing’ to mean different things, sometimes without realizing that they do. In addition, computation and information pro…Read more
  •  351
    Computation without representation
    Philosophical Studies 137 (2): 205-241. 2008.
    The received view is that computational states are individuated at least in part by their semantic properties. I offer an alternative, according to which computational states are individuated by their functional properties. Functional properties are specified by a mechanistic explanation without appealing to any semantic properties. The primary purpose of this paper is to formulate the alternative view of computational individuation, point out that it supports a robust notion of computational ex…Read more
  •  298
    Computational explanation in neuroscience
    Synthese 153 (3): 343-353. 2006.
    According to some philosophers, computational explanation is proprietary
    to psychology—it does not belong in neuroscience. But neuroscientists routinely offer computational explanations of cognitive phenomena. In fact, computational explanation was initially imported from computability theory into the science of mind by neuroscientists, who justified this move on neurophysiological grounds. Establishing the legitimacy and importance of computational explanation in neuroscience is one thing; shedd…
    Read more
  •  156
    Turing's rules for the imitation game
    Minds and Machines 10 (4): 573-582. 2000.
    In the 1950s, Alan Turing proposed his influential test for machine intelligence, which involved a teletyped dialogue between a human player, a machine, and an interrogator. Two readings of Turing's rules for the test have been given. According to the standard reading of Turing's words, the goal of the interrogator was to discover which was the human being and which was the machine, while the goal of the machine was to be indistinguishable from a human being. According to the literal reading, th…Read more
  •  111
    Access Denied to Zombies
    Topoi 36 (1): 81-93. 2017.
    I argue that metaphysicians of mind have not done justice to the notion of accessibility between possible worlds. Once accessibility is given its due, physicalism must be reformulated and conceivability arguments must be reevaluated. To reach these conclusions, I explore a novel way of assessing the zombie conceivability argument. I accept that zombies are possible and ask whether that possibility is accessible from our world in the sense of ‘accessible’ used in possible world semantics. It turn…Read more
  •  160
    Hurlburt and Schwitzgebel’s groundbreaking book, Describing Inner Experience: Proponent Meets Skeptic, examines a research method called Descriptive Experience Sampling (DES). DES, which was developed by Hurlburt and collaborators, works roughly as follows. An investigator gives a subject a random beeper. During the day, as the subject hears a beep, she writes a description of her conscious experience just before the beep. The next day, the investigator interviews the subject, asks for more deta…Read more
  •  77
    Allen Newell
    In Noretta Koertge (ed.), New Dictionary of Scientific Biography, Thomson Gale. 2007.
    Newell was a founder of artificial intelligence and a pioneer in the use of computer simulations in psychology. In collaboration with J. Cliff Shaw and Herbert A. Simon, Newell developed the first list-processing programming language as well as the earliest computer programs for simulating human problem solving. Over a long and prolific career, he contributed to many techniques, such as protocol analysis and heuristic search, that are now part of psychology and computer science. Colleagues remem…Read more
  •  9
    No Mental Life after Brain Death: The Argument from the Neural Localization of Mental Functions
    with Sonya Bahar
    In Keith Augustine & Michael Martin (eds.), The Myth of an Afterlife: The Case against Life After Death, Rowman & Littlefield. pp. 135-170. 2015.
    This paper samples the large body of neuroscientific evidence suggesting that each mental function takes place within specific neural structures. For instance, vision appears to occur in the visual cortex, motor control in the motor cortex, spatial memory in the hippocampus, and cognitive control in the prefrontal cortex. Evidence comes from neuroanatomy, neurophysiology, neurochemistry, brain stimulation, neuroimaging, lesion studies, and behavioral genetics. If mental functions take place with…Read more
  •  205
    First-Person Data, Publicity and Self-Measurement
    Philosophers' Imprint 9 1-16. 2009.
    First-person data have been both condemned and hailed because of their alleged privacy. Critics argue that science must be based on public evidence: since first-person data are private, they should be banned from science. Apologists reply that first-person data are necessary for understanding the mind: since first-person data are private, scientists must be allowed to use private evidence. I argue that both views rest on a false premise. In psychology and neuroscience, the subjects issuing first…Read more
  •  298
    According to pancomputationalism, everything is a computing system. In this paper, I distinguish between different varieties of pancomputationalism. I find that although some varieties are more plausible than others, only the strongest variety is relevant to the philosophy of mind, but only the most trivial varieties are true. As a side effect of this exercise, I offer a clarified distinction between computational modelling and computational explanation.<br><br>.
  •  232
    Pacific Philosophical Quarterly 89 (1). 2008.
    I offer an explication of the notion of computer, grounded in the practices of computability theorists and computer scientists. I begin by explaining what distinguishes computers from calculators. Then, I offer a systematic taxonomy of kinds of computer, including hard-wired versus programmable, general-purpose versus special-purpose, analog versus digital, and serial versus parallel, giving explicit criteria for each kind. My account is mechanistic: which class a system belongs in, and which fu…Read more
  •  333
    Despite its significance in neuroscience and computation, McCulloch and Pitts's celebrated 1943 paper has received little historical and philosophical attention. In 1943 there already existed a lively community of biophysicists doing mathematical work on neural networks. What was novel in McCulloch and Pitts's paper was their use of logic and computation to understand neural, and thus mental, activity. McCulloch and Pitts's contributions included (i) a formalism whose refinement and generalizati…Read more
  •  251
    Functions Must Be Performed at Appropriate Rates in Appropriate Situations
    British Journal for the Philosophy of Science 65 (1): 1-20. 2014.
    We sketch a novel and improved version of Boorse’s biostatistical theory of functions. Roughly, our theory maintains that (i) functions are non-negligible contributions to survival or inclusive fitness (when a trait contributes to survival or inclusive fitness); (ii) situations appropriate for the performance of a function are typical situations in which a trait contributes to survival or inclusive fitness; (iii) appropriate rates of functioning are rates that make adequate contributions to surv…Read more
  •  422
    Recovering What Is Said With Empty Names
    with Sam Scott
    Canadian Journal of Philosophy 40 (2): 239-273. 2010.
    As our data will show, negative existential sentences containing socalled empty names evoke the same strong semantic intuitions in ordinary speakers and philosophers alike.Santa Claus does not exist.Superman does not exist.Clark Kent does not exist.Uttering the sentences in (1) seems to say something truth-evaluable, to say something true, and to say something different for each sentence. A semantic theory ought to explain these semantic intuitions.The intuitions elicited by (1) are in apparent …Read more