Recently, Bohr’s complementarity principle was assessed in setups involving delayed choices. These works argued in favor of a reformulation of the aforementioned principle so as to account for situations in which a quantum system would simultaneously behave as wave and particle. Here we defend a framework that, supported by well-known experimental results and consistent with the decoherence paradigm, allows us to interpret complementarity in terms of correlations between the system and an inform…
Read moreRecently, Bohr’s complementarity principle was assessed in setups involving delayed choices. These works argued in favor of a reformulation of the aforementioned principle so as to account for situations in which a quantum system would simultaneously behave as wave and particle. Here we defend a framework that, supported by well-known experimental results and consistent with the decoherence paradigm, allows us to interpret complementarity in terms of correlations between the system and an informer. Our proposal offers formal definition and operational interpretation for the dual behavior in terms of both nonlocal resources and the couple work-information. Most importantly, our results provide a generalized information-based trade-off for the wave–particle duality and a causal interpretation for delayed-choice experiments