
25A note on parameter free Π1 induction and restricted exponentiationMathematical Logic Quarterly 57 (5): 444455. 2011.We characterize the sets of all Π2 and all equation image theorems of IΠ−1 in terms of restricted exponentiation, and use these characterizations to prove that both sets are not deductively equivalent. We also discuss how these results generalize to n > 0. As an application, we prove that a conservation theorem of Beklemishev stating that IΠ−n + 1 is conservative over IΣ−n with respect to equation image sentences cannot be extended to Πn + 2 sentences. © 2011 WILEYVCH Verlag GmbH & Co. KGaA, We…Read more

1Los agustinos de La Habana colonial ante el liberalismo españolRevista Agustiniana 49 (150): 885913. 2008.

7Induction, minimization and collection for Δ n+1 (T)–formulasArchive for Mathematical Logic 43 (4): 505541. 2003.For a theory T, we study relationships among IΔ n +1 (T), LΔ n+1 (T) and B * Δ n+1 (T). These theories are obtained restricting the schemes of induction, minimization and (a version of) collection to Δ n+1 (T) formulas. We obtain conditions on T (T is an extension of B * Δ n+1 (T) or Δ n+1 (T) is closed (in T) under bounded quantification) under which IΔ n+1 (T) and LΔ n+1 (T) are equivalent. These conditions depend on Th Πn +2 (T), the Π n+2 –consequences of T. The first condition is connected …Read more

12On the quantifier complexity of Δ n+1 (T)– inductionArchive for Mathematical Logic 43 (3): 371398. 2004.In this paper we continue the study of the theories IΔ n+1 (T), initiated in [7]. We focus on the quantifier complexity of these fragments and theirs (non)finite axiomatization. A characterization is obtained for the class of theories such that IΔ n+1 (T) is Π n+2 –axiomatizable. In particular, IΔ n+1 (IΔ n+1 ) gives an axiomatization of Th Π n+2 (IΔ n+1 ) and is not finitely axiomatizable. This fact relates the fragment IΔ n+1 (IΔ n+1 ) to induction rule for Δ n+1 –formulas. Our arguments, invo…Read more
University Park, Florida, United States of America