Boston, Massachusetts, United States of America
  •  41
    While the predominant focus of the philosophical literature on scientific modeling has been on single-scale models, most systems in nature exhibit complex multiscale behavior, requiring new modeling methods. This challenge of modeling phenomena across a vast range of spatial and temporal scales has been called the tyranny of scales problem. Drawing on research in the geosciences, I synthesize and analyze a number of strategies for taming this tyranny in the context of conceptual, physical, and…Read more
  •  259
    Data models, representation and adequacy-for-purpose
    European Journal for Philosophy of Science 11 (1): 1-26. 2021.
    We critically engage two traditional views of scientific data and outline a novel philosophical view that we call the pragmatic-representational view of data. On the PR view, data are representations that are the product of a process of inquiry, and they should be evaluated in terms of their adequacy or fitness for particular purposes. Some important implications of the PR view for data assessment, related to misrepresentation, context-sensitivity, and complementary use, are highlighted. The PR …Read more
  •  6
    Towards a Taxonomy of the Model-Ladenness of Data
    Philosophy of Science 87 (5): 793-806. 2020.
    Model-data symbiosis is the view that there is an interdependent and mutually beneficial relationship between data and models, whereby models are data-laden and data are model-laden. In this articl...
  •  147
    At the intersection of taxonomy and nomenclature lies the scientific practice of typification. This practice occurs in biology with the use of holotypes (type specimens), in geology with the use of stratotypes, and in metrology with the use of measurement prototypes. In this paper I develop the first general definition of a scientific type and outline a new philosophical theory of types inspired by Pierre Duhem. I use this general framework to resolve the necessity-contingency debate about ty…Read more
  •  261
    Towards a Taxonomy of the Model-Ladenness of Data
    PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association. forthcoming.
    Model-data symbiosis is the view that there is an interdependent and mutually beneficial relationship between data and models, whereby models are not only data-laden, but data are also model-laden or model filtered. In this paper I elaborate and defend the second, more controversial, component of the symbiosis view. In particular, I construct a preliminary taxonomy of the different ways in which theoretical and simulation models are used in the production of data sets. These include data convers…Read more
  •  208
    In 2012, the Geological Time Scale, which sets the temporal framework for studying the timing and tempo of all major geological, biological, and climatic events in Earth’s history, had one-quarter of its boundaries moved in a widespread revision of radiometric dates. The philosophy of metrology helps us understand this episode, and it, in turn, elucidates the notions of calibration, coherence, and consilience. I argue that coherence testing is a distinct activity preceding calibration and consil…Read more
  •  346
    Losing Sight of the Forest for the Ψ: Beyond the Wavefunction Hegemony
    In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum, Oxford University Press. 2019.
    Traditionally Ψ is used to stand in for both the mathematical wavefunction (the representation) and the quantum state (the thing in the world). This elision has been elevated to a metaphysical thesis by advocates of the view known as wavefunction realism. My aim in this paper is to challenge the hegemony of the wavefunction by calling attention to a little-known formulation of quantum theory that does not make use of the wavefunction in representing the quantum state. This approach, called La…Read more
  •  16
    Philosophical Explorations of the Legacy of Alan Turing (edited book)
    Springer Verlag. 2017.
  •  452
    Despite widespread evidence that fictional models play an explanatory role in science, resistance remains to the idea that fictions can explain. A central source of this resistance is a particular view about what explanations are, namely, the ontic conception of explanation. According to the ontic conception, explanations just are the concrete entities in the world. I argue this conception is ultimately incoherent and that even a weaker version of the ontic conception fails. Fictional models can…Read more
  •  452
    Using models to correct data: paleodiversity and the fossil record
    Synthese 198 (Suppl 24): 5919-5940. 2018.
    Despite an enormous philosophical literature on models in science, surprisingly little has been written about data models and how they are constructed. In this paper, I examine the case of how paleodiversity data models are constructed from the fossil data. In particular, I show how paleontologists are using various model-based techniques to correct the data. Drawing on this research, I argue for the following related theses: first, the ‘purity’ of a data model is not a measure of its epistemic …Read more
  •  289
    On the Identity of Thought Experiments: Thought Experiments Rethought
    with Mélanie Frappier
    In Michael T. Stuart, Yiftach J. H. Fehige & James Robert Brown (eds.), The Routledge Companion to Thought Experiments, Routledge. 2017.
  •  553
    The ontic conception of explanation, according to which explanations are "full-bodied things in the world," is fundamentally misguided. I argue instead for what I call the eikonic conception, according to which explanations are the product of an epistemic activity involving representations of the phenomena to be explained. What is explained in the first instance is a particular conceptualization of the explanandum phenomenon, contextualized within a given research program or explanatory project.…Read more
  •  464
    Models and Explanation
    In Lorenzo Magnani & Tommaso Wayne Bertolotti (eds.), Springer Handbook of Model-Based Science, Springer. pp. 103-118. 2017.
    Detailed examinations of scientific practice have revealed that the use of idealized models in the sciences is pervasive. These models play a central role in not only the investigation and prediction of phenomena, but in their received scientific explanations as well. This has led philosophers of science to begin revising the traditional philosophical accounts of scientific explanation in order to make sense of this practice. These new model-based accounts of scientific explanation, however, rai…Read more
  •  910
    In the spirit of explanatory pluralism, this chapter argues that causal and noncausal explanations of a phenomenon are compatible, each being useful for bringing out different sorts of insights. After reviewing a model-based account of scientific explanation, which can accommodate causal and noncausal explanations alike, an important core conception of noncausal explanation is identified. This noncausal form of model-based explanation is illustrated using the example of how Earth scientists in a…Read more
  •  696
    Models in the Geosciences
    In Lorenzo Magnani & Tommaso Wayne Bertolotti (eds.), Springer Handbook of Model-Based Science, Springer. pp. 891-911. 2017.
    The geosciences include a wide spectrum of disciplines ranging from paleontology to climate science, and involve studies of a vast range of spatial and temporal scales, from the deep-time history of microbial life to the future of a system no less immense and complex than the entire Earth. Modeling is thus a central and indispensable tool across the geosciences. Here, we review both the history and current state of model-based inquiry in the geosciences. Research in these fields makes use of a w…Read more
  •  22
    The Evolving Concepts of Nature, Time, and Causation
    Metascience 15 (1): 183-186. 2006.
  •  109
    Paul dirac and the Einstein-Bohr debate
    Perspectives on Science 16 (1): 103-114. 2008.
    : Although Dirac rarely participated in the interpretational debates over quantum theory, it is traditionally assumed that his views were aligned with Heisenberg and Bohr in the so-called Copenhagen-Göttingen camp. However, an unpublished—and apparently unknown—lecture of Dirac's reveals that this view is mistaken; in the famous debate between Einstein and Bohr, Dirac sided with Einstein. Surprisingly, Dirac believed that quantum mechanics was not complete, that the uncertainty principle would n…Read more
  •  97
    Horizontal models: From bakers to cats
    Philosophy of Science 70 (3): 609-627. 2003.
    At the center of quantum chaos research is a particular family of models known as quantum maps. These maps illustrate an important “horizontal” dimension to model construction that has been overlooked in the literature on models. Three ways in which quantum maps are being used to clarify the relationship between classical and quantum mechanics are examined. This study suggests that horizontal models may provide a new and fruitful framework for exploring intertheoretic relations.
  •  58
    A. Douglas Stone. Einstein and the Quantum: The Quest of the Valiant Swabian. (review)
    Hopos: The Journal of the International Society for the History of Philosophy of Science 5 (1): 177-79. 2015.
    While everyone knows of Einstein’s brilliant work on relativity theory and many know of his later opposition to quantum theory as immortalized in his remark “He [God] does not play dice,” few outside of limited academic circles know of Einstein’s many seminal contributions to the development of quantum theory. In this highly accessible and enjoyable popular science book, Douglas Stone seeks to revise our popular conception of Einstein and bring the story of his profound and revolutionary insight…Read more
  •  6
    Classical mechanics and quantum mechanics are two of the most successful scientific theories ever discovered, and yet how they can describe the same world is far from clear: one theory is deterministic, the other indeterministic; one theory describes a world in which chaos is pervasive, the other a world in which chaos is absent. Focusing on the exciting field of 'quantum chaos', this book reveals that there is a subtle and complex relation between classical and quantum mechanics. It challenges …Read more
  •  92
    Metaphysical Indeterminacy, Properties, and Quantum Theory
    Res Philosophica 91 (3): 449-475. 2014.
    It has frequently been suggested that quantum mechanics may provide a genuine case of ontic vagueness or metaphysical indeterminacy. However, discussions of quantum theory in the vagueness literature are often cursory and, as I shall argue, have in some respects been misguided. Hitherto much of the debate over ontic vagueness and quantum theory has centered on the “indeterminate identity” construal of ontic vagueness, and whether the quantum phenomenon of entanglement produces particles whose id…Read more
  •  121
    Can classical structures explain quantum phenomena?
    British Journal for the Philosophy of Science 59 (2): 217-235. 2008.
    In semiclassical mechanics one finds explanations of quantum phenomena that appeal to classical structures. These explanations are prima facie problematic insofar as the classical structures they appeal to do not exist. Here I defend the view that fictional structures can be genuinely explanatory by introducing a model-based account of scientific explanation. Applying this framework to the semiclassical phenomenon of wavefunction scarring, I argue that not only can the fictional classical trajec…Read more
  •  99
    Niels Bohr’s “correspondence principle” is typically believed to be the requirement that in the limit of large quantum numbers (n→∞) there is a statistical agreement between the quantum and classical frequencies. A closer reading of Bohr’s writings on the correspondence principle, however, reveals that this interpretation is mistaken. Specifically, Bohr makes the following three puzzling claims: First, he claims that the correspondence principle applies to small quantum numbers as well as large …Read more
  •  56
    Philosophy of Quantum Information and Entanglement (edited book)
    Cambridge University Press. 2010.
    "Entanglement can be understood as an extraordinary degree of correlation between states of quantum systems - a correlation that cannot be given an explanation ...
  •  543
    How scientific models can explain
    Synthese 180 (1). 2011.
    Scientific models invariably involve some degree of idealization, abstraction, or nationalization of their target system. Nonetheless, I argue that there are circumstances under which such false models can offer genuine scientific explanations. After reviewing three different proposals in the literature for how models can explain, I shall introduce a more general account of what I call model explanations, which specify the conditions under which models can be counted as explanatory. I shall illu…Read more
  •  40
    Scientific Structuralism (edited book)
    Springer Science+Business Media. 2011.
    This book will be of particular interest to those philosophers, scientists, and mathematicians who are interested in the foundations of science.
  •  121
    Open or closed? Dirac, Heisenberg, and the relation between classical and quantum mechanics
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3): 377-396. 2004.
    This paper describes a long-standing, though little-known, debate between Paul Dirac and Werner Heisenberg over the nature of scientific methodology, theory change, and intertheoretic relations. Following Heisenberg’s terminology, their disagreements can be summarized as a debate over whether the classical and quantum theories are “open” or “closed.” A close examination of this debate sheds new light on the philosophical views of two of the great founders of quantum theory.
  •  137
    Distinguishing Explanatory from Nonexplanatory Fictions
    Philosophy of Science 79 (5): 725-737. 2012.
    There is a growing recognition that fictions have a number of legitimate functions in science, even when it comes to scientific explanation. However, the question then arises, what distinguishes an explanatory fiction from a nonexplanatory one? Here I examine two cases—one in which there is a consensus in the scientific community that the fiction is explanatory and another in which the fiction is not explanatory. I shall show how my account of “model explanations” is able to explain this asymmet…Read more
  •  49
    Quantum measurements and supertasks
    International Studies in the Philosophy of Science 17 (2). 2003.
    This article addresses the question whether supertasks are possible within the context of non-relativistic quantum mechanics. The supertask under consideration consists of performing an infinite number of quantum mechanical measurements in a finite amount of time. Recent arguments in the physics literature claim to show that continuous measurements, understood as N discrete measurements in the limit where N goes to infinity, are impossible. I show that there are certain kinds of measurements in …Read more