The Logic of Causation: Definition, Induction and Deduction of Deterministic Causality is a treatise of formal logic and of aetiology. It is an original and wide-ranging investigation of the definition of causation (deterministic causality) in all its forms, and of the deduction and induction of such forms. The work was carried out in three phases over a dozen years (1998-2010), each phase introducing more sophisticated methods than the previous to solve outstanding problems. This study was inte…
Read moreThe Logic of Causation: Definition, Induction and Deduction of Deterministic Causality is a treatise of formal logic and of aetiology. It is an original and wide-ranging investigation of the definition of causation (deterministic causality) in all its forms, and of the deduction and induction of such forms. The work was carried out in three phases over a dozen years (1998-2010), each phase introducing more sophisticated methods than the previous to solve outstanding problems. This study was intended as part of a larger work on causal logic, which additionally treats volition and allied cause-effect relations (2004).
The Logic of Causation deals with the main technicalities relating to reasoning about causation. Once all the deductive characteristics of causation in all its forms have been treated, and we have gained an understanding as to how it is induced, we are able to discuss more intelligently its epistemological and ontological status. In this context, past theories of causation are reviewed and evaluated (although some of the issues involved here can only be fully dealt with in a larger perspective, taking volition and other aspects of causality into consideration, as done in Volition and Allied Causal Concepts).
Phase I: Macroanalysis. Starting with the paradigm of causation, its most obvious and strongest form, we can by abstraction of its defining components distinguish four genera of causation, or generic determinations, namely: complete, partial, necessary and contingent causation. When these genera and their negations are combined together in every which way, and tested for consistency, it is found that only four species of causation, or specific determinations, remain conceivable. The concept of causation thus gives rise to a number of positive and negative propositional forms, which can be studied in detail with relative ease because they are compounds of conjunctive and conditional propositions whose properties are already well known to logicians.
The logical relations (oppositions) between the various determinations (and their negations) are investigated, as well as their respective implications (eductions). Thereafter, their interactions (in syllogistic reasoning) are treated in the most rigorous manner. The main question we try to answer here is: is (or when is) the cause of a cause of something itself a cause of that thing, and if so to what degree? The figures and moods of positive causative syllogism are listed exhaustively; and the resulting arguments validated or invalidated, as the case may be. In this context, a general and sure method of evaluation called ‘matricial analysis’ (macroanalysis) is introduced. Because this (initial) method is cumbersome, it is used as little as possible – the remaining cases being evaluated by means of reduction.
Phase II: Microanalysis. Seeing various difficulties encountered in the first phase, and the fact that some issues were left unresolved in it, a more precise method is developed in the second phase, capable of systematically answering most outstanding questions. This improved matricial analysis (microanalysis) is based on tabular prediction of all logically conceivable combinations and permutations of conjunctions between two or more items and their negations (grand matrices). Each such possible combination is called a ‘modus’ and is assigned a permanent number within the framework concerned (for 2, 3, or more items). This allows us to identify each distinct (causative or other, positive or negative) propositional form with a number of alternative moduses.
This technique greatly facilitates all work with causative and related forms, allowing us to systematically consider their eductions, oppositions, and syllogistic combinations. In fact, it constitutes a most radical approach not only to causative propositions and their derivatives, but perhaps more importantly to their constituent conditional propositions. Moreover, it is not limited to logical conditioning and causation, but is equally applicable to other modes of modality, including extensional, natural, temporal and spatial conditioning and causation. From the results obtained, we are able to settle with formal certainty most of the historically controversial issues relating to causation.
Phase III: Software Assisted Analysis. The approach in the second phase was very ‘manual’ and time consuming; the third phase is intended to ‘mechanize’ much of the work involved by means of spreadsheets (to begin with). This increases reliability of calculations (though no errors were found, in fact) – but also allows for a wider scope. Indeed, we are now able to produce a larger, 4-item grand matrix, and on its basis find the moduses of causative and other forms needed to investigate 4-item syllogism. As well, now each modus can be interpreted with greater precision and causation can be more precisely defined and treated.
In this latest phase, the research is brought to a successful finish! Its main ambition, to obtain a complete and reliable listing of all 3-item and 4-item causative syllogisms, being truly fulfilled. This was made technically feasible, in spite of limitations in computer software and hardware, by cutting up problems into smaller pieces. For every mood of the syllogism, it was thus possible to scan for conclusions ‘mechanically’ (using spreadsheets), testing all forms of causative and preventive conclusions. Until now, this job could only be done ‘manually’, and therefore not exhaustively and with certainty. It took over 72’000 pages of spreadsheets to generate the sought for conclusions.
This is a historic breakthrough for causal logic and logic in general. Of course, not all conceivable issues are resolved. There is still some work that needs doing, notably with regard to 5-item causative syllogism. But what has been achieved solves the core problem. The method for the resolution of all outstanding issues has definitely now been found and proven. The only obstacle to solving most of them is the amount of labor needed to produce the remaining (less important) tables. As for 5-item syllogism, bigger computer resources are also needed.