•  4
    This article shows how fundamental higher-order theories of mathematical structures of computer science are categorical meaning that they can be axiomatized up to a unique isomorphism thereby removing any ambiguity in the mathematical structures being axiomatized. Having these mathematical structures precisely defined can make systems more secure because there are fewer ambiguities and holes for cyberattackers to exploit. For example, there are no infinite elements in models for natural numbers …Read more
  •  5
    This article follows on the introductory article “Direct Logic for Intelligent Applications” [Hewitt 2017a]. Strong Types enable new mathematical theorems to be proved including the Formal Consistency of Mathematics. Also, Strong Types are extremely important in Direct Logic because they block all known paradoxes[Cantini and Bruni 2017]. Blocking known paradoxes makes Direct Logic safer for use in Intelligent Applications by preventing security holes. Inconsistency Robustness is performance of i…Read more