•  623
    Two types of idealization in theory construction are distinguished, and the distinction is used to give a critique of Ron Laymon's account of confirming idealized theories and his argument for scientific realism.
  •  482
    I first give a brief summary of a critique of the traditional theories of approximation and idealization; and after identifying one of the major roles of idealization as detaching component processes or systems from their joints, a detailed analysis is given of idealized laws – which are discoverable and/or applicable – in such processes and systems (i.e., idealized model systems). Then, I argue that dispositional properties should be regarded as admissible properties for laws and that such an i…Read more
  •  267
    In this paper, a criticism of the traditional theories of approximation and idealization is given as a summary of previous works. After identifying the real purpose and measure of idealization in the practice of science, it is argued that the best way to characterize idealization is not to formulate a logical model – something analogous to Hempel's D-N model for explanation – but to study its different guises in the praxis of science. A case study of it is then made in thermostatistical physics.…Read more
  •  208
    The aharonov-Bohm effect and the reality of wave packets
    British Journal for the Philosophy of Science 45 (4): 977-1000. 1994.
    The objective of this paper is to show that, instead of quantum probabilities, wave packets are physically real. First, Cartwright's recent argument for the reality of quantum probabilities is criticized. Then, the notion of ‘physically real’ is precisely defined and the difference between wave functions and quantum probabilities clarified. Being thus prepared, some strong reasons are discussed for considering the wave packet to be physically real. Finding the reasons inconclusive, I explain how…Read more
  •  140
    Explaining quantum spontaneous symmetry breaking
    with Gérard G. Emch
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1): 137-163. 2005.
    Two alternative accounts of quantum spontaneous symmetry breaking (SSB) are compared and one of them, the decompositional account in the algebraic approach, is argued to be superior for understanding quantum SSB. Two exactly solvable models are given as applications of our account -- the Weiss-Heisenberg model for ferromagnetism and the BCS model for superconductivity. Finally, the decompositional account is shown to be more conducive to the causal explanation of quantum SSB.
  •  136
    Holism vs. particularism: A lesson from classical and quantum physics (review)
    Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 27 (2): 267-279. 1996.
    The present essay aims at broadening the recent discussion on the issue of holism vs. particularism in quantum physics. I begin with a clarification of the relation between the holism/particularism debate and the discussion of supervenience relation. I then defend particularism in physics (including quantum physics) by considering a new classification of properties of physical systems. With such a classification, the results in the Bell theorem are shown to violate spatial separability but not p…Read more
  •  120
    Is there a relativistic thermodynamics? A case study of the meaning of special relativity
    Studies in History and Philosophy of Science Part A 25 (6): 983-1004. 1994.
  •  116
    Models and theories I: The semantic view revisited
    International Studies in the Philosophy of Science 11 (2). 1997.
    The paper, as Part I of a two-part series, argues for a hybrid formulation of the semantic view of scientific theories. For stage-setting, it first reviews the elements of the model theory in mathematical logic (on whose foundation the semantic view rests), the syntactic and the semantic view, and the different notions of models used in the practice of science. The paper then argues for an integration of the notions into the semantic view, and thereby offers a hybrid semantic view, which at once…Read more
  •  106
    Gauge gravity and the unification of natural forces
    International Studies in the Philosophy of Science 17 (2). 2001.
    Physics seems to tell us that there are four fundamental force-fields in nature: the gravitational, the electromagnetic, the weak, and the strong (or interactions). But it also seems to tell us that gravity cannot possibly be a force-field, in the same sense as the other three are. And yet the search for a grand unification of all four force-fields is today one of the hottest pursuits. Is this the result of a simple confusion? This article aims at clarifying this situation by (i) reviewing the g…Read more
  •  105
    The arrow of time in quantum gravity
    Philosophy of Science 60 (4): 619-637. 1993.
    This essay is a philosophical evaluation of some of the findings of Wald and Penrose in which they claim to have supported an arrow (or the irreversibility) of time in quantum gravity. First, the notion of lawlike irreversibility (or anisotropy) of time is spelled out, then the general situation in quantum mechanics is briefly discussed. Finally, the findings in quantum gravity are evaluated against such a background. My conclusion is that the arrow of time found in quantum gravity is at best de…Read more
  •  98
    Explaining the emergence of cooperative phenomena
    Philosophy of Science 66 (3): 106. 1999.
    Phase transitions are well-understood phenomena in thermodynamics (TD), but it turns out that they are mathematically impossible in finite SM systems. Hence, phase transitions are truly emergent properties. They appear again at the thermodynamic limit (TL), i.e., in infinite systems. However, most, if not all, systems in which they occur are finite, so whence comes the justification for taking TL? The problem is then traced back to the TD characterization of phase transitions, and it turns out t…Read more
  •  97
    Infinite systems in SM explanations: Thermodynamic limit, renormalization (semi-) groups, and irreversibility
    Proceedings of the Philosophy of Science Association 2001 (3). 2001.
    This paper examines the justifications for using infinite systems to 'recover' thermodynamic properties, such as phase transitions (PT), critical phenomena (CP), and irreversibility, from the micro-structure of matter in bulk. Section 2 is a summary of such rigorous methods as in taking the thermodynamic limit (TL) to recover PT and in using renormalization (semi-) group approach (RG) to explain the universality of critical exponents. Section 3 examines various possible justifications for taking…Read more
  •  93
    Our discussion in the first five sections shows that little new can be said about compatibilism, that van Inwagen's argument for incompatibilism still stands, and that the view of free agency for a libertarian has little chance unless she believes that agency contains elements that are not within the natural order. Borrowing from a suggestion from Russell we expanded the Nozick-Kane model of libertarian free agency and connected it to the Wignerian interpretation of quantum measurement. As such,…Read more
  •  86
    Symbolic versus Modelistic Elements in Scientific Modeling
    Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 30 (2): 287. 2015.
    In this paper, we argue that symbols are conventional vehicles whose chief function is denotation, while models are epistemic vehicles, and their chief function is to show what their targets are like in the relevant aspects. And we explain why this is incompatible with the deflationary view on scientific modeling. Although the same object may serve both functions, the two vehicles are conceptually distinct and most models employ both elements. With the clarification of this point we offer an alt…Read more
  •  81
    Classical spontaneous symmetry breaking
    Philosophy of Science 70 (5): 1219-1232. 2003.
    This paper aims at answering the simple question, “What is spontaneous symmetry breaking (SSB) in classical systems?” I attempt to do this by analyzing from a philosophical perspective a simple classical model which exhibits some of the main features of SSB. Related questions include: What does it mean to say that a symmetry is spontaneously broken? Is it broken without any causes, or is the symmetry not broken but merely hidden? Is the principle, “no asymmetry in, no asymmetry out,” violated by…Read more
  •  81
    Spontaneous symmetry breaking and chance in a classical world
    Philosophy of Science 70 (3): 590-608. 2003.
    This essay explores the nature of spontaneous symmetry breaking (SSB) in connection with a cluster of interrelated concepts such as Curie's symmetry principle, ergodicity, and chance and stability in classical systems. First, a clarification of the two existing senses of SSB is provided and an argument developed for a proposal for SSB, in which not only the possibilities but also the actual breakings are referred to. Second, a detailed analysis is given of classical SSB that answers the question…Read more
  •  57
    The concepts in the title refer to properties of physical theories and this paper investigates their nature and relations. The first three concepts, especially gauge invariance and indeterminism, have been widely discussed in connection to spacetime theories and the hole argument. Since the gauge invariance principle is at the crux of the issue, this paper aims at clarifying the nature of gauge invariance. I first explore the following chain of relations: gauge invariance $\Rightarrow $ the cons…Read more
  •  56
    I argue that categorical realism, contrary to what most believe today, holds for quantum (and indeed for all) objects and substances. The main argument consists of two steps: (i) the recent experimental verification of the AB effect gives strong empirical evidence for taking quantum potentials as physically real (or substantival), which suggests a change of the data upon which any viable interpretation of quantum theory must rely, and (ii) quantum potentials may be consistently taken as the cate…Read more
  •  55
    Against the New Fictionalism: A Hybrid View of Scientific Models
    International Studies in the Philosophy of Science 30 (1): 39-54. 2016.
    This article develops an approach to modelling and models in science—the hybrid view—that is against model fictionalism of a recent stripe. It further argues that there is a version of fictionalism about models to which my approach is neutral and which makes sense only if one adopts a special sort of antirealism. Otherwise, my approach strongly suggests that one stay away from fictionalism and embrace realism directly.
  •  54
    This paper, part I of a two-part project, aims at answering the simple question 'what is spontaneous symmetry breaking?' by analyzing from a philosophical perspective a simple classical model. Related questions include: what does it mean to break a symmetry spontaneously? Is the breaking causal, or is the symmetry not broken but merely hidden? Is the meta-principle, 'no asymmetry in, no asymmetry out,' violated? And what is the role in this of random perturbations (or fluctuations)?
  •  50
    The paper discusses the recent literature on abstraction/idealization in connection with the “paradox of infinite idealization.” We use the case of taking thermodynamics limit in dealing with the phenomena of phase transition and critical phenomena to broach the subject. We then argue that the method of infinite idealization is widely used in the practice of science, and not all uses of the method are the same. We then confront the compatibility problem of infinite idealization with scientific r…Read more
  •  44
    In this essay, I explore a metaphor in geometry for the debate between the unity and the disunity of science, namely, the possibility of putting a global coordinate system (or a chart) on a manifold. I explain why the former is a good metaphor that shows what it means (and takes in principle) for science to be unified. I then go through some of the existing literature on the unity/disunity debate and show how the metaphor sheds light on some of the views and arguments.
  •  43
    Over forty years after the foundations of the special theory of relativity had been securely laid, a heated debate, beginning in 1965, about the correct formulation of relativistic thermodynamics raged in the physics literature. Prior to 1965, relativistic thermodynamics was considered one of the most secure relativistic theories and one of the most simple and elegant examples of relativization in physics. It is, as its name apparently suggests, the result of the application of the special theor…Read more
  •  43
    This paper aims at answering the simple question `what is spontaneous symmetry breaking (SSB)?` by analyzing from a philosophical perspective a simple classical model which exhibits all the requisite properties of SSB. Related questions include: what does it mean to say that a symmetry is spontaneously broken? Is it broken without any cause, or is the symmetry not broken but merely hidden? Is the meta-principle, `no asymmetry in, no asymmetry out,` violated by SSB? And what is the role in this o…Read more
  •  40
    Infinite idealization and contextual realism
    Synthese 196 (5): 1885-1918. 2019.
    The paper discusses the recent literature on abstraction/idealization in connection with the “paradox of infinite idealization.” We use the case of taking thermodynamics limit in dealing with the phenomena of phase transition and critical phenomena to broach the subject. We then argue that the method of infinite idealization is widely used in the practice of science, and not all uses of the method are the same. We then confront the compatibility problem of infinite idealization with scientific r…Read more
  •  40
    In this paper I explore the nature of spontaneous symmetry breaking in connection with a cluster of interrelated concepts such as Curie's symmetry principle, chance, and stability.
  •  31
    Models and theories II: Issues and applications
    International Studies in the Philosophy of Science 12 (2). 1998.
    This paper is the second of a two-part series on models and theories, the first of which appeared in International Studies in the Philosophy of Science, Vol. 11, No. 2, 1997. It further explores some of themes of the first paper and examines applications, including: the relations between “similarity” and “isomorphism”, and between “model” and “interpretation”, and the notion of structural explanation.
  •  31
    This paper, part II of a two-part project, continues to explore the meaning of spontaneous symmetry breaking (SSB) by applying and expanding the general notion we obtained in part I to some more complex and, from the physics point of view, more important models (in condensed matter physics and in quantum field theories).
  •  28
    This paper examines the justifications for using infinite systems to ‘recover’ thermodynamic properties, such as phase transitions, critical phenomena, and irreversibility, from the micro-structure of matter in bulk. Section 2 is a summary of such rigorous methods as in taking the thermodynamic limit to recover PT and in using renormalization group approach to explain the universality of critical exponents. Section 3 examines various possible justifications for taking TL on physically finite sys…Read more