
271Dedekind’s Analysis of Number: Systems and AxiomsSynthese 147 (1): 121170. 2005.Wilfred Sieg and Dirk Schlimm. Dedekind's Analysis of Number: Systems and Axioms

135Learning from the existence of models: On psychic machines, tortoises, and computer simulationsSynthese 169 (3). 2009.Using four examples of models and computer simulations from the history of psychology, I discuss some of the methodological aspects involved in their construction and use, and I illustrate how the existence of a model can demonstrate the viability of a hypothesis that had previously been deemed impossible on a priori grounds. This shows a new way in which scientists can learn from models that extends the analysis of Morgan (1999), who has identified the construction and manipulation of models as…Read more

129Extended mathematical cognition: External representations with nonderived contentSynthese 121. forthcoming.Vehicle externalism maintains that the vehicles of our mental representations can be located outside of the head, that is, they need not be instantiated by neurons located inside the brain of the cogniser. But some disagree, insisting that ‘nonderived’, or ‘original’, content is the mark of the cognitive and that only biologically instantiated representational vehicles can have nonderived content, while the contents of all extraneural representational vehicles are derived and thus lie outside…Read more

112Against Against IntuitionismSynthese 147 (1): 171188. 2005.The main ideas behind Brouwer’s philosophy of Intuitionism are presented. Then some critical remarks against Intuitionism made by William Tait in “Against Intuitionism” [Journal of Philosophical Logic, 12, 173–195] are answered.

95On the creative role of axiomatics. The discovery of lattices by Schröder, Dedekind, Birkhoff, and othersSynthese 183 (1): 4768. 2011.Three different ways in which systems of axioms can contribute to the discovery of new notions are presented and they are illustrated by the various ways in which lattices have been introduced in mathematics by Schröder et al. These historical episodes reveal that the axiomatic method is not only a way of systematizing our knowledge, but that it can also be used as a fruitful tool for discovering and introducing new mathematical notions. Looked at it from this perspective, the creative aspect of…Read more

89Conceptual Metaphors and Mathematical Practice: On Cognitive Studies of Historical Developments in MathematicsTopics in Cognitive Science 5 (2): 283298. 2013.This article looks at recent work in cognitive science on mathematical cognition from the perspective of history and philosophy of mathematical practice. The discussion is focused on the work of Lakoff and Núñez, because this is the first comprehensive account of mathematical cognition that also addresses advanced mathematics and its history. Building on a distinction between mathematics as it is presented in textbooks and as it presents itself to the researcher, it is argued that the focus of c…Read more

89Pasch’s philosophy of mathematicsReview of Symbolic Logic 3 (1): 93118. 2010.Moritz Pasch (1843ber neuere Geometrie (1882), in which he also clearly formulated the view that deductions must be independent from the meanings of the nonlogical terms involved. Pasch also presented in these lectures the main tenets of his philosophy of mathematics, which he continued to elaborate on throughout the rest of his life. This philosophy is quite unique in combining a deductivist methodology with a radically empiricist epistemology for mathematics. By taking into consideration publi…Read more

78Modeling ancient and modern arithmetic practices: Addition and multiplication with Arabic and Roman numeralsIn B. C. Love, K. McRae & V. M. Sloutsky (eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society, Cognitive Science Society. pp. 20972102. 2008.To analyze the task of mental arithmetic with external representations in different number systems we model algorithms for addition and multiplication with Arabic and Roman numerals. This demonstrates that Roman numerals are not only informationally equivalent to Arabic ones but also computationally similar—a claim that is widely disputed. An analysis of our models' elementary processing steps reveals intricate tradeoffs between problem representation, algorithm, and interactive resources. Our s…Read more

74Axioms in Mathematical PracticePhilosophia Mathematica 21 (1): 3792. 2013.On the basis of a wide range of historical examples various features of axioms are discussed in relation to their use in mathematical practice. A very general framework for this discussion is provided, and it is argued that axioms can play many roles in mathematics and that viewing them as selfevident truths does not do justice to the ways in which mathematicians employ axioms. Possible origins of axioms and criteria for choosing axioms are also examined. The distinctions introduced aim at clar…Read more

72A new look at analogical reasoning Content Type Journal Article Pages 15 DOI 10.1007/s110160119563z Authors Dirk Schlimm, Department of Philosophy, McGill University, Montreal, QC H3A 2T7, Canada Journal Metascience Online ISSN 14679981 Print ISSN 08150796

71Two Ways of Analogy: Extending the Study of Analogies to Mathematical DomainsPhilosophy of Science 75 (2): 178200. 2008.The structuremapping theory has become the defacto standard account of analogies in cognitive science and philosophy of science. In this paper I propose a distinction between two kinds of domains and I show how the account of analogies based on structurepreserving mappings fails in certain (objectrich) domains, which are very common in mathematics, and how the axiomatic approach to analogies, which is based on a common linguistic description of the analogs in terms of laws or axioms, can be …Read more

60Dedekind's Abstract Concepts: Models and MappingsPhilosophia Mathematica. 2014.Dedekind's mathematical work is integral to the transformation of mathematics in the nineteenth century and crucial for the emergence of structuralist mathematics in the twentieth century. We investigate the essential components of what Emmy Noether called, his ‘axiomatic standpoint’: abstract concepts, models, and mappings.

59The cultural challenge in mathematical cognitionJournal of Numerical Cognition 2 (4). 2018.In their recent paper on “Challenges in mathematical cognition”, Alcock and colleagues (Alcock et al. [2016]. Challenges in mathematical cognition: A collaborativelyderived research agenda. Journal of Numerical Cognition, 2, 2041) defined a research agenda through 26 specific research questions. An important dimension of mathematical cognition almost completely absent from their discussion is the cultural constitution of mathematical cognition. Spanning work from a broad range of disciplines –…Read more

53On Abstraction and the Importance of Asking the Right Research Questions: Could Jordan have Proved the JordanHölder Theorem?Erkenntnis 68 (3): 409420. 2008.In 1870 Jordan proved that the composition factors of two composition series of a group are the same. Almost 20 years later Hölder (1889) was able to extend this result by showing that the factor groups, which are quotient groups corresponding to the composition factors, are isomorphic. This result, nowadays called the JordanHölder Theorem, is one of the fundamental theorems in the theory of groups. The fact that Jordan, who was working in the framework of substitution groups, was able to prove…Read more

42Axiomatics and progress in the light of 20th century philosophy of science and mathematicsIn Benedikt Löwe, Volker Peckhaus & T. Rasch (eds.), Foundations of the Formal Sciences IV, College Publications. 2006.This paper is a contribution to the question of how aspects of science have been perceived through history. In particular, I will discuss how the contribution of axiomatics to the development of science and mathematics was viewed in 20th century philosophy of science and philosophy of mathematics. It will turn out that in connection with scientiﬁc methodology, in particular regarding its use in the context of discovery, axiomatics has received only very little attention. This is a rather surpris…Read more

41The Cognitive Advantages of Counting Specifically: A Representational Analysis of Verbal Numeration Systems in Oceanic LanguagesTopics in Cognitive Science 7 (4): 552569. 2015.The domain of numbers provides a paradigmatic case for investigating interactions of culture, language, and cognition: Numerical competencies are considered a core domain of knowledge, and yet the development of specifically human abilities presupposes cultural and linguistic input by way of counting sequences. These sequences constitute systems with distinct structural properties, the crosslinguistic variability of which has implications for number representation and processing. Such represent…Read more

40Mathematical concepts and investigative practiceIn Uljana Feest & Friedrich Steinle (eds.), Scientific Concepts and Investigative Practice, De Gruyter. pp. 3127. 2012.In this paper I investigate two notions of concepts that have played a dominant role in 20th century philosophy of mathematics. According to the first, concepts are definite and fixed; in contrast, according to the second notion concepts are open and subject to modifications. The motivations behind these two incompatible notions and how they can be used to account for conceptual change are presented and discussed. On the basis of historical developments in mathematics I argue that both notions o…Read more

36Metaphors for Mathematics from Pasch to HilbertPhilosophia Mathematica 24 (3): 308329. 2016.How mathematicians conceive of the nature of mathematics is reflected in the metaphors they use to talk about it. In this paper I investigate a change in the use of metaphors in the late nineteenth and early twentieth centuries. In particular, I argue that the metaphor of mathematics as a tree was used systematically by Pasch and some of his contemporaries, while that of mathematics as a building was deliberately chosen by Hilbert to reflect a different view of mathematics. By taking these metap…Read more

35On Frege’s Begriffsschrift Notation for Propositional Logic: Design Principles and TradeOffsHistory and Philosophy of Logic 39 (1): 5379. 2018.Well over a century after its introduction, Frege's twodimensional Begriffsschrift notation is still considered mainly a curiosity that stands out more for its clumsiness than anything else. This paper focuses mainly on the propositional fragment of the Begriffsschrift, because it embodies the characteristic features that distinguish it from other expressively equivalent notations. In the first part, I argue for the perspicuity and readability of the Begriffsschrift by discussing several idiosy…Read more

33Methodological Reflections on Typologies for Numerical NotationsScience in Context 25 (2): 155195. 2012.Past and present societies worldwide have employed well over 100 distinct notational systems for representing natural numbers, some of which continue to play a crucial role in intellectual and cultural development today. The diversity of these notations has prompted the need for classificatory schemes, or typologies, to provide a systematic starting point for their discussion and appraisal. The present paper provides a general framework for assessing the efficacy of these typologies relative to…Read more

30José Ferreirós. Mathematical Knowledge and the Interplay of Practices (review)Philosophia Mathematica 25 (1): 139143. 2017.

30Richard Zach, Hilbert's 'Verunglückter Beweis', the First Epsilon Theorem, and Consistency Proofs (review)Bulletin of Symbolic Logic 11 (2): 247248. 2005.

26The Marriott Hotel Philadelphia, Pennsylvania December 27–30, 2008Bulletin of Symbolic Logic 15 (2). 2009.

22Formal Languages in Logic. A Philosophical and Cognitive Analysis (review)History and Philosophy of Logic 35 (1): 13. 2014.History and Philosophy of Logic, Volume 35, Issue 1, Page 108110, February 2014

17Learning the structure of abstract groupsIn N. A. Taatgen & H. van Rijn (eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society, . pp. 21005. 2009.

16Research in History and Philosophy of Mathematics: The CSHPM 2018 Volume (edited book)Springer Verlag. 2020.

14Research in History and Philosophy of Mathematics: The CSHPM 2016 Annual Meeting in Calgary, Alberta (edited book)Birkhäuser. 2017.Proceedings of the Canadian Society for History and Philosophy of Mathematics.
Montréal, Quebec, Canada
Areas of Specialization
Philosophy of Mathematics 
General Philosophy of Science 
History of Mathematics 
Mathematical Practice 
Areas of Interest
History of Logic 
19th Century Logic 
History of Mathematics 
Mathematical Practice 
PhilPapers Editorships
Areas of Mathematics 