The Knower paradox purports to place surprising a priori limitations on what we can know. According to orthodoxy, it shows that we need to abandon one of three plausible and widely-held ideas: that knowledge is factive, that we can know that knowledge is factive, and that we can use logical/mathematical reasoning to extend our knowledge via very weak single-premise closure principles. I argue that classical logic, not any of these epistemic principles, is the culprit. I develop a consistent theo…

Read moreThe Knower paradox purports to place surprising a priori limitations on what we can know. According to orthodoxy, it shows that we need to abandon one of three plausible and widely-held ideas: that knowledge is factive, that we can know that knowledge is factive, and that we can use logical/mathematical reasoning to extend our knowledge via very weak single-premise closure principles. I argue that classical logic, not any of these epistemic principles, is the culprit. I develop a consistent theory validating all these principles by combining Hartry Field's theory of truth with a modal enrichment developed for a different purpose by Michael Caie. The only casualty is classical logic: the theory avoids paradox by using a weaker-than-classical K3 logic.
I then assess the philosophical merits of this approach. I argue that, unlike the traditional semantic paradoxes involving extensional notions like truth, its plausibility depends on the way in which sentences are referred to--whether in natural languages via direct sentential reference, or in mathematical theories via indirect sentential reference by Gödel coding. In particular, I argue that from the perspective of natural language, my non-classical treatment of knowledge as a predicate is plausible, while from the perspective of mathematical theories, its plausibility depends on unresolved questions about the limits of our idealized deductive capacities.