• Aggregation for general populations without continuity or completeness
    David McCarthy, Kalle Mikkola, and Teruji Thomas
    MPRA Paper No. 80820. 2017.
    We generalize Harsanyi's social aggregation theorem. We allow the population to be infinite, and merely assume that individual and social preferences are given by strongly independent preorders on a convex set of arbitrary dimension. Thus we assume neither completeness nor any form of continuity. Under Pareto indifference, the conclusion of Harsanyi's theorem nevertheless holds almost entirely unchanged when utility values are taken to be vectors in a product of lexicographic function spaces. T…Read more