• University of Helsinki
    Department of Philosophy (Theoretical Philosophy, Practical Philosophy, Philosophy in Swedish)
    Post-doctoral fellow
University of Helsinki
Department of Philosophy (Theoretical Philosophy, Practical Philosophy, Philosophy in Swedish)
PhD, 2009
  •  1
    Beck presents an outline of the procedure of bootstrapping of integer concepts, with the purpose of explicating the account of Carey. According to that theory, integer concepts are acquired through a process of inductive and analogous reasoning based on the object tracking system, which allows individuating objects in a parallel fashion. Discussing the bootstrapping theory, Beck dismisses what he calls the "deviant-interpretation challenge"—the possibility that the bootstrapped integer sequence …Read more
  •  2
    Assessing the “Empirical Philosophy of Mathematics”
    Discipline filosofiche. 25 (1): 111-130. 2015.
    In the new millennium there have been important empirical developments in the philosophy of mathematics. One of these is the so-called “Empirical Philosophy of Mathematics” of Buldt, Löwe, Müller and Müller-Hill, which aims to complement the methodology of the philosophy of mathematics with empirical work. Among other things, this includes surveys of mathematicians, which EPM believes to give philosophically important results. In this paper I take a critical look at the sociological part of EP…Read more
  •  608
    The Great Gibberish - Mathematics in Western Popular Culture
    In Brendan Larvor (ed.), Mathematical Cultures: The London Meetings 2012--2014, Springer International Publishing. pp. 409-437. 2016.
    In this paper, I study how mathematicians are presented in western popular culture. I identify five stereotypes that I test on the best-known modern movies and television shows containing a significant amount of mathematics or important mathematician characters: (1) Mathematics is highly valued as an intellectual pursuit. (2) Little attention is given to the mathematical content. (3) Mathematical practice is portrayed in an unrealistic way. (4) Mathematicians are asocial and unable to enjoy nor…Read more
  •  1555
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, s…Read more