In this paper, I argue that a naturalist approach in philosophy of mathematics justifies a pluralist conception of set theory. For the pluralist, there is not a Single Universe, but there is rather a Multiverse, composed by a plurality of universes generated by various set theories. In order to justify a pluralistic approach to sets, I apply the two naturalistic principles developed by Penelope Maddy (cfr. Maddy (1997)), UNIFY and MAXIMIZE, and analyze through them the potential of the set theor…

Read moreIn this paper, I argue that a naturalist approach in philosophy of mathematics justifies a pluralist conception of set theory. For the pluralist, there is not a Single Universe, but there is rather a Multiverse, composed by a plurality of universes generated by various set theories. In order to justify a pluralistic approach to sets, I apply the two naturalistic principles developed by Penelope Maddy (cfr. Maddy (1997)), UNIFY and MAXIMIZE, and analyze through them the potential of the set theoretic multiverse to be the best framework for mathematical practice. According to UNIFY, an adequate set theory should be foundational, in the sense that it should allow one to represent all the currently accepted mathematical theories. As for MAXIMIZE, this states that any adequate set theory should be as powerful as possible, allowing one to prove as many results and isomorphisms as possible. In a recent paper, Maddy (2017) has argued that this two principle justify ZFC as the best framework for mathematical practice. I argue that, pace Maddy, these two principles justify a multiverse conception of set theory, more precisely, the generic multiverse with a core (GMH).