
192The Church–Fitch knowability paradox in the light of structural proof theorySynthese 190 (14): 26772716. 2012.Antirealist epistemic conceptions of truth imply what is called the knowability principle: All truths are possibly known. The principle can be formalized in a bimodal propositional logic, with an alethic modality ${\diamondsuit}$ and an epistemic modality ${\mathcal{K}}$, by the axiom scheme ${A \supset \diamondsuit \mathcal{K} A}$. The use of classical logic and minimal assumptions about the two modalities lead to the paradoxical conclusion that all truths are known, ${A \supset \mathcal{K} A}…Read more

133Intuitionistic mereologySynthese 198 (Suppl 18): 42774302. 2021.Two mereological theories are presented based on a primitive apartness relation along with binary relations of mereological excess and weak excess, respectively. It is shown that both theories are acceptable from the standpoint of constructive reasoning while remaining faithful to the spirit of classical mereology. The two theories are then compared and assessed with regard to their extensional import.

115Logic in analytic philosophy: a quantitative analysisSynthese 198 (11): 1099111028. 2020.Using quantitative methods, we investigate the role of logic in analytic philosophy from 1941 to 2010. In particular, a corpus of five journals publishing analytic philosophy is assessed and evaluated against three main criteria: the presence of logic, its role and level of technical sophistication. The analysis reveals that logic is not present at all in nearly threequarters of the corpus, the instrumental role of logic prevails over the noninstrumental ones, and the level of technical sophis…Read more

105Proof theory of epistemic logic of programsLogic and Logical Philosophy 23 (3): 301328. 2014.A combination of epistemic logic and dynamic logic of programs is presented. Although rich enough to formalize some simple gametheoretic scenarios, its axiomatization is problematic as it leads to the paradoxical conclusion that agents are omniscient. A cutfree labelled Gentzenstyle proof system is then introduced where knowledge and action, as well as their combinations, are formulated as rules of inference, rather than axioms. This provides a logical framework for reasoning about games in a…Read more

68The article investigates what happens when philosophy meets and begins to establish connections with two formal research methods such as game theory and network science. We use citation analysis to identify, among the articles published in Synthese and Philosophy of Science between 1985 and 2021, those that cite the specialistic literature in game theory and network science. Then, we investigate the structure of the two corpora thus identified by bibliographic coupling and divide them into clust…Read more

68Modular Sequent Calculi for Classical Modal LogicsStudia Logica 103 (1): 175217. 2015.This paper develops sequent calculi for several classical modal logics. Utilizing a polymodal translation of the standard modal language, we are able to establish a base system for the minimal classical modal logic E from which we generate extensions in a modular manner. Our systems admit contraction and cut admissibility, and allow a systematic proofsearch procedure of formal derivations

51Intuitionistic Mereology II: Overlap and DisjointnessJournal of Philosophical Logic 52 (4): 11971233. 2023.This paper extends the axiomatic treatment of intuitionistic mereology introduced in Maffezioli and Varzi (_Synthese, 198_(S18), 4277–4302 2021 ) by examining the behavior of constructive notions of overlap and disjointness. We consider both (i) various ways of defining such notions in terms of other intuitionistic mereological primitives, and (ii) the possibility of treating them as mereological primitives of their own.

50Analytic Rules for MereologyStudia Logica 104 (1): 79114. 2016.We present a sequent calculus for extensional mereology. It extends the classical firstorder sequent calculus with identity by rules of inference corresponding to wellknown mereological axioms. Structural rules, including cut, are admissible

44Bocheński's Formalization of Summa Theologiae (Ia,75,6) ReconsideredHistory and Philosophy of Logic 41 (2): 191198. 2020.I investigate Bocheński's firstorder logic formalization of the argument for the incorruptibility of the human soul given by Aquinas in Summa Theologiae (Ia,75,6). I suggest a slightly different axiomatization that reflect better Aquinas' informal argument. Along the way, I also fix a mistake in Bocheński's derivation that the human soul is not corruptible per se.

36An intuitionistic logic for preference relationsLogic Journal of the IGPL 27 (4): 434450. 2019.We investigate in intuitionistic firstorder logic various principles of preference relations alternative to the standard ones based on the transitivity and completeness of weak preference. In particular, we suggest two ways in which completeness can be formulated while remaining faithful to the spirit of constructive reasoning, and we prove that the cotransitivity of the strict preference relation is a valid intuitionistic alternative to the transitivity of weak preference. Along the way, we al…Read more

33Full Cut Elimination and Interpolation for Intuitionistic Logic with Existence PredicateBulletin of the Section of Logic 48 (2): 137158. 2019.In previous work by Baaz and Iemhoff, a Gentzen calculus for intuitionistic logic with existence predicate is presented that satisfies partial cut elimination and Craig's interpolation property; it is also conjectured that interpolation fails for the implicationfree fragment. In this paper an equivalent calculus is introduced that satisfies full cut elimination and allows a direct proof of interpolation via Maehara's lemma. In this way, it is possible to obtain much simpler interpolants and to …Read more

30Interpolation in Extensions of FirstOrder LogicStudia Logica 108 (3): 619648. 2020.We prove a generalization of Maehara’s lemma to show that the extensions of classical and intuitionistic firstorder logic with a special type of geometric axioms, called singular geometric axioms, have Craig’s interpolation property. As a corollary, we obtain a direct proof of interpolation for (classical and intuitionistic) firstorder logic with identity, as well as interpolation for several mathematical theories, including the theory of equivalence relations, (strict) partial and linear orde…Read more

28The Arithmetical dictumHistory and Philosophy of Logic 44 (4): 373394. 2023.Building on previous scholarly work on the mathematical roots of assertoric syllogistic we submit that for Aristotle, the semantic value of the copula in universal affirmative propositions is the relation of divisibility on positive integers. The adequacy of this interpretation, labeled here ‘arithmetical dictum’, is assessed both theoretically and textually with respect to the existing interpretations, especially the socalled ‘mereological dictum’.

25Sequents for nonwellfounded mereologyLogic and Logical Philosophy 25 (3): 351369. 2016.The paper explores the proof theory of nonwellfounded mereology with binary fusions and provides a cutfree sequent calculus equivalent to the standard axiomatic system.

23Hume on the Monetary Fallacy of Monotonic CounterfactualsAxiomathes 32 (2): 593606. 2022.I focus on the commonly shared view that Hume’s monetary theory is inconsistent. I review several attempts to solve the alleged inconsistency in Hume’s monetary theory, including the consensus interpretation according to which Hume was committed to the neutrality of money only in the long run, while he conceded that money can be nonneutral in the short run. Then, building on a monetary version of the logical fallacy of monotonic counterfactuals in the essay Of the Balance of Trade, I argue for …Read more

17Cut elimination for coherent theories in negation normal formArchive for Mathematical Logic 63 (3): 427445. 2024.We present a cutfree sequent calculus for a class of firstorder theories in negation normal form which include coherent and cocoherent theories alike. All structural rules, including cut, are admissible.

11Zeno of Sidon vindicatus: a mereological analysis of the bisection of the circleLogic and Logical Philosophy 120. forthcoming.I provide a mereological analysis of Zeno of Sidon’s objection that in Euclid’s Elements we need to supplement the principle that there are no common segments of straight lines and circumferences. The objection is based on the claim that such a principle is presupposed in the proof that the diameter cuts the circle in half. Against Zeno, Posidonius attempts to prove against Zeno the bisection of the circle without resorting to Zeno’s principle. I show that Posidonius’ proof is flawed as it fails…Read more

A proof theoretical perspective on public announcement logicLogic and Philosophy of Science. forthcoming.

Universitat de BarcelonaPostdoctoral Fellow
Barcelona, Spain
Areas of Specialization
Logic and Philosophy of Logic 