•  575
    The notions of conservation and relativity lie at the heart of classical mechanics, and were critical to its early development. However, in Newton’s theory of mechanics, these symmetry principles were eclipsed by domain-specific laws. In view of the importance of symmetry principles in elucidating the structure of physical theories, it is natural to ask to what extent conservation and relativity determine the structure of mechanics. In this paper, we address this question by deriving classical m…Read more
  •  161
    According to our understanding of the everyday physical world, observable phenomena are underpinned by persistent objects that can be reidentified across time by observation of their distinctive properties. This understanding is reflected in classical mechanics, which posits that matter consists of persistent, reidentifiable particles. However, the mathematical symmetrization procedures used to describe identical particles within the quantum formalism have led to the widespread belief that ident…Read more
  •  59
    Husserl, the mathematization of nature, and the informational reconstruction of quantum theory
    with Philipp Berghofer and Harald Wiltsche
    Continental Philosophy Review 54 (4): 413-436. 2020.
    As is well known, the late Husserl warned against the dangers of reifying and objectifying the mathematical models that operate at the heart of our physical theories. Although Husserl’s worries were mainly directed at Galilean physics, the first aim of our paper is to show that many of his critical arguments are no less relevant today. By addressing the formalism and current interpretations of quantum theory, we illustrate how topics surrounding the mathematization of nature come to the fore nat…Read more
  •  55
    The quantum symmetrization procedure that is used to handle systems of identical quantum particles brings into question whether the elementary constituents of matter, such as electrons, have the fundamental characteristics of persistence and reidentifiability that are attributed to classical particles. However, we presently lack a coherent conception of matter composed of entities that do not possess one or both of these fundamental characteristics. We also lack a clear a priori understanding of…Read more
  •  21
    The notions of conservation and relativity lie at the heart of classical mechanics, and were critical to its early development. However, in Newton’s theory of mechanics, these symmetry principles were eclipsed by domain-specific laws. In view of the importance of symmetry principles in elucidating the structure of physical theories, it is natural to ask to what extent conservation and relativity determine the structure of mechanics. In this paper, we address this question by deriving classical m…Read more