•  275
    Quantum hypercomputability?
    Minds and Machines 16 (1): 87-93. 2006.
    A recent proposal to solve the halting problem with the quantum adiabatic algorithm is criticized and found wanting. Contrary to other physical hypercomputers, where one believes that a physical process “computes” a (recursive-theoretic) non-computable function simply because one believes the physical theory that presumably governs or describes such process, believing the theory (i.e., quantum mechanics) in the case of the quantum adiabatic “hypercomputer” is tantamount to acknowledging that the…Read more
  •  158
    Experimental metaphysics2: The double standard in the quantum-information approach to the foundations of quantum theory
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (4): 906-919. 2007.
    Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one’s system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the ‘apparent’ collapse in open quantum systems. But while recent advances i…Read more
  •  167
    Relying on the universality of quantum mechanics and on recent results known as the “threshold theorems,” quantum information scientists deem the question of the feasibility of large‐scale, fault‐tolerant, and computationally superior quantum computers as purely technological. Reconstructing this question in statistical mechanical terms, this article suggests otherwise by questioning the physical significance of the threshold theorems. The skepticism it advances is neither too strong (hence is c…Read more