•  216
    Do not claim too much: Second-order logic and first-order logic
    Philosophia Mathematica 7 (1): 42-64. 1999.
    The purpose of this article is to delimit what can and cannot be claimed on behalf of second-order logic. The starting point is some of the discussions surrounding my Foundations without Foundationalism: A Case for Secondorder Logic.
  •  207
    Mathematical structuralism
    Philosophia Mathematica 4 (2): 81-82. 1996.
    STEWART SHAPIRO; Mathematical Structuralism, Philosophia Mathematica, Volume 4, Issue 2, 1 May 1996, Pages 81–82, https://doi.org/10.1093/philmat/4.2.81.
  •  79
    Classical Logic
    In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, The Metaphysics Research Lab. 2014.
    Typically, a logic consists of a formal or informal language together with a deductive system and/or a model-theoretic semantics. The language is, or corresponds to, a part of a natural language like English or Greek. The deductive system is to capture, codify, or simply record which inferences are correct for the given language, and the semantics is to capture, codify, or record the meanings, or truth-conditions, or possible truth conditions, for at least part of the language.
  •  83
    Varieties of Logic
    Oxford University Press. 2014.
    Logical pluralism is the view that different logics are equally appropriate, or equally correct. Logical relativism is a pluralism according to which validity and logical consequence are relative to something. Stewart Shapiro explores various such views. He argues that the question of meaning shift is itself context-sensitive and interest-relative.
  •  64
    Structure and Ontology
    Philosophical Topics 17 (2): 145-171. 1989.
  •  136
    All sets great and small: And I do mean ALL
    Philosophical Perspectives 17 (1). 2003.
    A number of authors have recently weighed in on the issue of whether it is coherent to have bound variables that range over absolutely everything. Prima facie, it is difficult, and perhaps impossible, to coherently state the “relativist” position without violating it. For example, the relativist might say, or try to say, that for any quantifier used in a proposition of English, there is something outside of its range. What is the range of this quantifier? Or suppose we ask the relativist if …Read more
  •  46
    Understanding the Infinite
    Philosophical Review 105 (2): 256. 1996.
    Understanding the Infinite is a loosely connected series of essays on the nature of the infinite in mathematics. The chapters contain much detail, most of which is interesting, but the reader is not given many clues concerning what concepts and ideas are relevant for later developments in the book. There are, however, many technical cross-references, so the reader can expect to spend much time flipping backward and forward.
  •  1
    Kit Fine Precis. Discussion
    Philosophical Studies 122 (3). 2005.
  •  17
    The articles in this volume represent a part of the philosophical literature on higher-order logic and the Skolem paradox. They ask the question what is second-order logic? and examine various interpretations of the Lowenheim-Skolem theorem.
  •  150
    Incompleteness and inconsistency
    Mind 111 (444): 817-832. 2002.
    Graham Priest's In Contradiction (Dordrecht: Martinus Nijhoff Publishers, 1987, chapter 3) contains an argument concerning the intuitive, or ‘naïve’ notion of (arithmetic) proof, or provability. He argues that the intuitively provable arithmetic sentences constitute a recursively enumerable set, which has a Gödel sentence which is itself intuitively provable. The incompleteness theorem does not apply, since the set of provable arithmetic sentences is not consistent. The purpose of this article i…Read more
  •  100
    Prolegomenon To Any Future Neo‐Logicist Set Theory: Abstraction And Indefinite Extensibility
    British Journal for the Philosophy of Science 54 (1): 59-91. 2003.
    The purpose of this paper is to assess the prospects for a neo‐logicist development of set theory based on a restriction of Frege's Basic Law V, which we call (RV): ∀P∀Q[Ext(P) = Ext(Q) ≡ [(BAD(P) & BAD(Q)) ∨ ∀x(Px ≡ Qx)]] BAD is taken as a primitive property of properties. We explore the features it must have for (RV) to sanction the various strong axioms of Zermelo–Fraenkel set theory. The primary interpretation is where ‘BAD’ is Dummett's ‘indefinitely extensible’.1 Background: what and why?2…Read more
  •  2
    Understanding the Infinite
    with Shaughan Lavine
    Studia Logica 63 (1): 123-128. 1994.
  • Thinking about Mathematics: The Philosophy of Mathematics
    Philosophical Quarterly 52 (207): 272-274. 2002.
  •  156
    Frege Meets Aristotle: Points as Abstracts
    Philosophia Mathematica. 2015.
    There are a number of regions-based accounts of space/time, due to Whitehead, Roeper, Menger, Tarski, the present authors, and others. They all follow the Aristotelian theme that continua are not composed of points: each region has a proper part. The purpose of this note is to show how to recapture ‘points’ in such frameworks via Scottish neo-logicist abstraction principles. The results recapitulate some Aristotelian themes. A second agenda is to provide a new arena to help decide what is at sta…Read more
  •  56
    Remarks on the development of computability
    History and Philosophy of Logic 4 (1-2): 203-220. 1983.
    The purpose of this article is to examine aspects of the development of the concept and theory of computability through the theory of recursive functions. Following a brief introduction, Section 2 is devoted to the presuppositions of computability. It focuses on certain concepts, beliefs and theorems necessary for a general property of computability to be formulated and developed into a mathematical theory. The following two sections concern situations in which the presuppositions were realized …Read more
  •  964
    What is mathematical logic?
    Philosophia 8 (1): 79-94. 1978.
    This review concludes that if the authors know what mathematical logic is they have not shared their knowledge with the readers. This highly praised book is replete with errors and incoherency.
  •  88
    Second-order logic, foundations, and rules
    Journal of Philosophy 87 (5): 234-261. 1990.
  •  237
    There is a parallel between the debate between Gottlob Frege and David Hilbert at the turn of the twentieth century and at least some aspects of the current controversy over whether category theory provides the proper framework for structuralism in the philosophy of mathematics. The main issue, I think, concerns the place and interpretation of meta-mathematics in an algebraic or structuralist approach to mathematics. Can meta-mathematics itself be understood in algebraic or structural terms? Or …Read more
  •  417
    Mathematics and reality
    Philosophy of Science 50 (4): 523-548. 1983.
    The subject of this paper is the philosophical problem of accounting for the relationship between mathematics and non-mathematical reality. The first section, devoted to the importance of the problem, suggests that many of the reasons for engaging in philosophy at all make an account of the relationship between mathematics and reality a priority, not only in philosophy of mathematics and philosophy of science, but also in general epistemology/metaphysics. This is followed by a (rather brief) sur…Read more
  •  50
    Vagueness in Context
    Oxford University Press UK. 2006.
    Stewart Shapiro's aim in Vagueness in Context is to develop both a philosophical and a formal, model-theoretic account of the meaning, function, and logic of vague terms in an idealized version of a natural language like English. It is a commonplace that the extensions of vague terms vary with such contextual factors as the comparison class and paradigm cases. A person can be tall with respect to male accountants and not tall with respect to professional basketball players. The main feature of S…Read more
  •  103
    Sets and Abstracts – Discussion
    Philosophical Studies 122 (3): 315-332. 2005.
  •  132
    Author index — volume 7
    Philosophia Mathematica 7 (3): 351-352. 1999.
  •  126
    Tarski’s Theorem and the Extensionality of Truth
    Erkenntnis 78 (5): 1197-1204. 2013.