Shan Gao

Shanxi University
  • Shanxi University
    Research Center For Philosophy Of Science And Technology
    Professor
University of Sydney
Department of Philosophy
PhD, 2013
Areas of Interest
Philosophy of Mind
  •  5
    It is widely accepted that continuity is the most essential characteristic of motion; the motion of macroscopic objects is apparently continuous, and classical mechanics, which describes such motion, is also based on the assumption of continuous motion. But is motion really continuous in reality? In this paper, I will try to answer this question through a new analysis of the cause of motion. It has been argued that the standard velocity in classical mechanics cannot fulfill the causal role requi…Read more
  •  203
    The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic …Read more
  •  7
    Energy nonconservation is a serious problem of dynamical collapse theories. In this paper, we propose a discrete model of energy-conserved wavefunction collapse. It is shown that the model is consistent with existing experiments and our macroscopic experience.
  •  10
    The ontological model framework provides a rigorous approach to address the question of whether the quantum state is ontic or epistemic. When considering only conventional projective measurements, auxiliary assumptions are always needed to prove the reality of the quantum state in the framework. For example, the Pusey-Barrett-Rudolph theorem is based on an additional preparation independence assumption. In this paper, we give a new proof of psi-ontology in terms of protective measurements in the…Read more
  •  27
    It is shown that Uffink's attempt to protect the interpretation of the wave function against protective measurements fails due to several errors in his arguments
  •  11
    Protective measurement is a new measuring method introduced by Aharonov, Anandan and Vaidman. By a protective measurement, one can measure the expectation value of an observable on a single quantum system, even if the system is initially not in an eigenstate of the measured observable. This remarkable feature of protective measurements was challenged by Uffink. He argued that only observables that commute with the system's Hamiltonian can be protectively measured, and a protective measurement of…Read more
  •  2
    It is shown that the de Broglie-Bohm theory has a potential problem concerning the charge distribution of a quantum system such as an electron. According to the guidance equation of the theory, the electron's charge is localized in a position where its Bohmian particle is. But according to the Schrödinger equation of the theory, the electron's charge is not localized in one position but distributed throughout space, and the charge density in each position is proportional to the modulus square of…Read more
  •  3
    According to Penrose, the fundamental conflict between the superposition principle of quantum mechanics and the general covariance principle of general relativity entails the existence of wavefunction collapse, e.g. a quantum superposition of two different space-time geometries will collapse to one of them due to the ill-definedness of the time-translation operator for the superposition. In this paper, we argue that Penrose's conjecture on gravity's role in wavefunction collapse is debatable. Fi…Read more
  •  4
    The ontological status of the wave function in quantum mechanics has been analyzed in the context of conventional projective measurements. These analyses are usually based on some nontrivial assumptions, e.g. a preparation independence assumption is needed to prove the PBR theorem. In this paper, we give a PBR-like argument for psi-ontology in terms of protective measurements, by which one can directly measure the expectation values of observables on a single quantum system. The proof does not r…Read more
  •  10
    It has been realized that in order to solve the measurement problem, the physical state representing the measurement result is required to be also the physical state on which the mental state of an observer supervenes. This introduces an additional restriction on the solutions to the measurement problem. In this paper, I give a new formulation of the measurement problem which lays more stress on psychophysical connection, and analyze whether Everett's theory, Bohm's theory and dynamical collapse…Read more
  •  210
    The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translat…Read more
  •  1
    There are three possible interpretations of the wave function in the de Broglie-Bohm theory: taking the wave function as corresponding to a physical entity or a property of the Bohmian particles or a law. In this paper, we argue that the first interpretation is favored by an analysis of protective measurements.
  •  1
    It is argued that the existence of a minimum interval of space and time may imply the existence of gravity as a geometric property of spacetime described by general relativity.