Shan Gao

Shanxi University
  • Shanxi University
    Research Center For Philosophy Of Science And Technology
    Professor
University of Sydney
Department of Philosophy
PhD, 2013
Areas of Interest
Philosophy of Mind
  •  338
    Based on an analysis of protective measurements, we show that the quantum state represents the physical state of a single quantum system. This result is more definite than the PBR theorem [Pusey, Barrett, and Rudolph, Nature Phys. 8, 475 (2012)].
  •  16
    It is argued that in Bohmian mechanics the effective wave function of a subsystem of the universe does not encode the influences of other particles on the subsystem. This suggests that the ontology of Bohmian mechanics does not consist only in Bohmian particles and their positions. It is nonetheless pointed out that since the wave function in configuration space may represent the state of ergodic motion of non-Bohmian particles in three-dimensional space, the ontology of Bohmian mechanics may st…Read more
  •  22
    Recently Lewis et al. [Phys. Rev. Lett. 109, 150404 ] demonstrated that additional assumptions such as preparation independence are always necessary to rule out a psi-epistemic model, in which the quantum state is not uniquely determined by the underlying physical state. Their conclusion is based on an analysis of conventional projective measurements. Here we demonstrate that protective measurements, which are distinct from projective measurements, already shows that distinct quantum states cann…Read more
  •  64
    We suggest a new answer to this intriguing question and argue that the answer may have implications for the solutions to the measurement problem. The main basis of our analysis is the doctrine of psychophysical supervenience. First of all, based on this doctrine, we argue that an observer in a quantum superposition or a quantum observer has a definite conscious experience, which is neither disjunctive nor illusive. The inconsistency of this result with the bare theory is further analyzed, and it…Read more
  •  296
    A quantum theory of consciousness
    Minds and Machines 18 (1): 39-52. 2007.
    The relationship between quantum collapse and consciousness is reconsidered under the assumption that quantum collapse is an objective dynamical process. We argue that the conscious observer can have a distinct role from the physical measuring device during the process of quantum collapse owing to the intrinsic nature of consciousness; the conscious observer can know whether he is in a definite state or a quantum superposition of definite states, while the physical measuring device cannot “know”…Read more
  •  18
    Quantum Mechanics and Panpsychism
    In Michel Weber and Will Desmond (ed.), Handbook of Whiteheadian Process Thought, De Gruyter. pp. 223-234. 2008.
  •  46
    An argument for ψ-ontology in terms of protective measurements
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B): 198-202. 2015.
    The ontological model framework provides a rigorous approach to address the question of whether the quantum state is ontic or epistemic. When considering only conventional projective measurements, auxiliary assumptions are always needed to prove the reality of the quantum state in the framework. For example, the Pusey-Barrett-Rudolph theorem is based on an additional preparation independence assumption. In this paper, we give a new proof of psi-ontology in terms of protective measurements in the…Read more
  •  45
    In this article, we give a clearer argument for the reality of the wave function in terms of protective measurements, which does not depend on nontrivial assumptions and also overcomes existing objections. Moreover, based on an analysis of the mass and charge properties of a quantum system, we propose a new ontological interpretation of the wave function. According to this interpretation, the wave function of an N-body system represents the state of motion of N particles. Moreover, the motion of…Read more
  •  692
    It is shown that the superposed wave function of a measuring device, in each branch of which there is a definite measurement result, does not correspond to many mutually unobservable but equally real worlds, as the superposed wave function can be observed in our world by protective measurement.