Shan Gao

Shanxi University
  • Shanxi University
    Research Center For Philosophy Of Science And Technology
    Professor
University of Sydney
Department of Philosophy
PhD, 2013
Areas of Interest
Philosophy of Mind
  •  588
    We investigate the implications of protective measurement for de Broglie-Bohm theory, mainly focusing on the interpretation of the wave function. It has been argued that the de Broglie-Bohm theory gives the same predictions as quantum mechanics by means of quantum equilibrium hypothesis. However, this equivalence is based on the premise that the wave function, regarded as a Ψ-field, has no mass and charge density distributions. But this premise turns out to be wrong according to protective measu…Read more
  •  1082
    We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. The essential diffe…Read more
  •  3067
    It is shown that the heuristic "derivation" of the Schrödinger equation in quantum mechanics textbooks can be turned into a real derivation by resorting to spacetime translation invariance and relativistic invariance.
  •  338
    A possible quantum basis of panpsychism
    Neuroquantology 1 (1): 4-9. 2001.
    We show that consciousness may violate the basic quantum principle, according to which the nonorthogonal quantum states can't be distinguished. This implies that the physical world is not causally closed without consciousness, and consciousness is a fundamental property of matter.
  •  1048
    We investigate the validity of the field explanation of the wave function by analyzing the mass and charge density distributions of a quantum system. It is argued that a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. This is also a consequence of protective measurement. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously fo…Read more
  •  348
    In quantum mechanics, the wave function of a N-body system is a mathematical function defined in a 3N-dimensional configuration space. We argue that wave function realism implies particle ontology when assuming: (1) the wave function of a N-body system describes N physical entities; (2) each triple of the 3N coordinates of a point in configuration space that relates to one physical entity represents a point in ordinary three-dimensional space. Moreover, the motion of particles is random and disc…Read more
  •  22
    It is shown that the de Broglie-Bohm theory has a potential problem concerning the mass and charge distributions of a quantum system such as an electron. According to the de Broglie-Bohm theory, the mass and charge of an electron are localized in a position where its Bohmian particle is. However, protective measurement indicates that they are not localized in one position but distributed throughout space, and the mass and charge density of the electron in each position is proportional to the mod…Read more
  •  29
    A possible mechanism of nonlinear quantum evolution is introduced and its implications for quantum communication are investigated. First, it is demonstrated that an appropriate combination of wavefunction collapse and the consciousness of observer may permit the observer to distinguish nonorthogonal quantum states in principle, and thus consciousness will introduce certain nonlinearity into quantum dynamics. Next, it is shown that the distinguishability of nonorthogonal states can be used to ach…Read more
  •  54
    This article re-examines Schrödinger’s charge density hypothesis, according to which the charge of an electron is distributed in the whole space, and the charge density in each position is proportional to the modulus squared of the wave function of the electron there. It is shown that the charge distribution of a quantum system can be measured by protective measurements as expectation values of certain observables, and the results as predicted by quantum mechanics confirm Schrödinger’s original …Read more