•  75
    Quantum States as Objective Informational Bridges
    Foundations of Physics 47 (2): 161-173. 2017.
    A quantum state represents neither properties of a physical system nor anyone’s knowledge of its properties. The important question is not what quantum states represent but how they are used—as informational bridges. Knowing about some physical situations, an agent may assign a quantum state to form expectations about other possible physical situations. Quantum states are objective: only expectations based on correct state assignments are generally reliable. If a quantum state represents anythin…Read more
  •  53
    Quantum entanglement is widely believed to be a feature of physical reality with undoubted metaphysical implications. But Schrödinger introduced entanglement as a theoretical relation between representatives of the quantum states of two systems. Entanglement represents a physical relation only if quantum states are elements of physical reality. So arguments for metaphysical holism or nonseparability from entanglement rest on a questionable view of quantum theory. Assignment of entangled quantum …Read more
  •  383
    Quantum analogies: A reply to Maudlin
    Philosophy of Science 66 (3): 440-447. 1999.
    Quantum mechanics predicted the Aharonov-Bohm effect and violations of Bell inequalities before either phenomenon was experimentally verified. It is now commonly taken to explain both phenomena. Maudlin has pointed out significant disanalogies between these phenomena. But he has failed to appreciate the striking analogy that emerges when one examines the structure of their quantum mechanical explanations. The fact that each may be explained quantum mechanically in terms of a locally-acting, but …Read more