•  297
    Quantum Mechanics on Spacetime I: Spacetime State Realism
    with Christopher Gordon Timpson
    British Journal for the Philosophy of Science 61 (4): 697-727. 2010.
    What ontology does realism about the quantum state suggest? The main extant view in contemporary philosophy of physics is wave-function realism . We elaborate the sense in which wave-function realism does provide an ontological picture, and defend it from certain objections that have been raised against it. However, there are good reasons to be dissatisfied with wave-function realism, as we go on to elaborate. This motivates the development of an opposing picture: what we call spacetime state re…Read more
  •  219
    Review of Laura Ruetsche's "Interpreting quantum theories" (review)
    British Journal for the Philosophy of Science 65 (2): 425-428. 2014.
  •  160
    Decoherence and Ontology (or: How I learned to stop worrying and love FAPP)
    In Simon Saunders, Jon Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality, Oxford University Press. pp. 53--72. 2010.
    NGC 1300 (shown in figure 1) is a spiral galaxy 65 million light years from Earth.1 We have never been there, and (although I would love to be wrong about this) we will never go there; all we will ever know about NGC 1300 is what we can see of it from sixty-five million light years away, and what we can infer from our best physics. Fortunately, “what we can infer from our best physics” is actually quite a lot. To take a particular example: our best theory of galaxies tells us that that hazy glow…Read more
  •  60
    In this article, I briefly explain the quantum measurement problem and the Everett interpretation, in a way that is faithful to modern physics and yet accessible to readers without any physics training. I then consider the metaphysical lessons for ontology from quantum mechanics under the Everett interpretation. My conclusions are largely negative: I argue that very little can be said in full generality about the ontology of quantum mechanics, because quantum mechanics, like abstract classical m…Read more
  •  127
    The relativity and equivalence principles for self-gravitating systems
    In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories, Birkhauser. 2016.
    I criticise the view that the relativity and equivalence principles are consequences of the small-scale structure of the metric in general relativity, by arguing that these principles also apply to systems with non-trivial self-gravitation and hence non-trivial spacetime curvature (such as black holes). I provide an alternative account, incorporating aspects of the criticised view, which allows both principles to apply to systems with self-gravity.
  •  86
    I explore the reduction of thermodynamics to statistical mechanics by treating the former as a control theory: a theory of which transitions between states can be induced on a system by means of operations from a fixed list. I recover the results of standard thermodynamics in this framework on the assumption that the available operations do not include measurements which affect subsequent choices of operations. I then relax this assumption and use the framework to consider the vexed questions of…Read more
  •  104
    Probability in Physics: Stochastic, Statistical, Quantum
    In Alastair Wilson (ed.), Chance and Temporal Asymmetry, Oxford University Press. 2014.
    I review the role of probability in contemporary physics and the origin of probabilistic time asymmetry, beginning with the pre-quantum case but concentrating on quantum theory. I argue that quantum mechanics radically changes the pre-quantum situation and that the philosophical nature of objective probability in physics, and of probabilistic asymmetry in time, is dependent on the correct resolution of the quantum measurement problem.
  •  262
    An investigation is made into how the foundations of statistical mechanics are affected once we treat classical mechanics as an approximation to quantum mechanics in certain domains rather than as a theory in its own right; this is necessary if we are to understand statistical-mechanical systems in our own world. Relevant structural and dynamical differences are identified between classical and quantum mechanics (partly through analysis of technical work on quantum chaos by other authors). These…Read more