•  117
    An extended analysis is given of the program, originally suggested by Deutsch, of solving the probability problem in the Everett interpretation by means of decision theory. Deutsch's own proof is discussed, and alternatives are presented which are based upon different decision theories and upon Gleason's Theorem. It is argued that decision theory gives Everettians most or all of what they need from `probability'. Contact is made with Lewis's Principal Principle linking subjective credence with o…Read more
  •  105
    I investigate the consequences for semantics, and in particular for the semantics of tense, if time is assumed to have a branching structure not out of metaphysical necessity (to solve some philosophical problem) but just as a contingent physical fact, as is suggested by a currently-popular approach to the interpretation of quantum mechanics.
  •  50
    Using the parametrised representation of field theory I demonstrate that in both local and global cases, internal and spacetime symmetries can be treated precisely on a par, so that gravitational theories may be regarded as gauge theories in a completely standard sense.
  •  66
    Decoherence is widely felt to have something to do with the quantum measurement problem, but getting clear on just what is made diffcult by the fact that the "measurement problem", as traditionally presented in foundational and philosophical discussions, has become somewhat disconnected from the conceptual problems posed by real physics. This, in turn, is because quantum mechanics as discussed in textbooks and in foundational discussions has become somewhat removed from scientific practice, espe…Read more
  •  200
    Who's afraid of coordinate systems? An essay on representation of spacetime structure
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67 125-136. 2019.
    Coordinate-based approaches to physical theories remain standard in mainstream physics but are largely eschewed in foundational discussion in favour of coordinate-free differential-geometric approaches. I defend the conceptual and mathematical legitimacy of the coordinate-based approach for foundational work. In doing so, I provide an account of the Kleinian conception of geometry as a theory of invariance under symmetry groups; I argue that this conception continues to play a very substantial r…Read more
  •  126
    The Everett interpretation of quantum mechanics - better known as the Many-Worlds Theory - has had a rather uneven reception. Mainstream philosophers have scarcely heard of it, save as science fiction. In philosophy of physics it is well known but has historically been fairly widely rejected. Among physicists, it is taken very seriously indeed, arguably tied for first place in popularity with more traditional operationalist views of quantum mechanics. In this article, I provide a fairly short an…Read more
  •  40
    I contrast two possible attitudes towards a given branch of physics: as inferential, and as dynamical. I contrast these attitudes in classical statistical mechanics, in quantum mechanics, and in quantum statistical mechanics; in this last case, I argue that the quantum-mechanical and statistical-mechanical aspects of the question become inseparable. Along the way various foundational issues in statistical and quantum physics are illuminated.
  •  331
    Epistemology quantized: Circumstances in which we should come to believe in the Everett interpretation
    British Journal for the Philosophy of Science 57 (4): 655-689. 2006.
    I consider exactly what is involved in a solution to the probability problem of the Everett interpretation, in the light of recent work on applying considerations from decision theory to that problem. I suggest an overall framework for understanding probability in a physical theory, and conclude that this framework, when applied to the Everett interpretation, yields the result that that interpretation satisfactorily solves the measurement problem. Introduction What is probability? 2.1 Objective …Read more
  •  334
    Saunders and Wallace reply
    British Journal for the Philosophy of Science 59 (3): 315-317. 2008.
    A reply to a comment by Paul Tappenden (BJPS 59 (2008) pp. 307-314) on S. Saunders and D. Wallace, "Branching and Uncertainty" (BJPS 59 (2008) pp. 298-306)
  •  81
    The quantitative content of statistical mechanics
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B): 285-293. 2015.
  •  313
    Quantum probability from subjective likelihood: Improving on Deutsch's proof of the probability rule
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2): 311-332. 2007.
    I present a proof of the quantum probability rule from decision-theoretic assumptions, in the context of the Everett interpretation. The basic ideas behind the proof are those presented in Deutsch's recent proof of the probability rule, but the proof is simpler and proceeds from weaker decision-theoretic assumptions. This makes it easier to discuss the conceptual ideas involved in the proof, and to show that they are defensible.
  •  91
    More problems for Newtonian cosmology
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 57 35-40. 2017.
    I point out a radical indeterminism in potential-based formulations of Newtonian gravity once we drop the condition that the potential vanishes at infinity. This indeterminism, which is well known in theoretical cosmology but has received little attention in foundational discussions, can be removed only by specifying boundary conditions at all instants of time, which undermines the theory's claim to be fully cosmological, i.e., to apply to the Universe as a whole. A recent alternative formulatio…Read more
  •  461
    Gravity, Entropy, and Cosmology: in Search of Clarity
    British Journal for the Philosophy of Science 61 (3): 513-540. 2010.
    I discuss the statistical mechanics of gravitating systems and in particular its cosmological implications, and argue that many conventional views on this subject in the foundations of statistical mechanics embody significant confusion; I attempt to provide a clearer and more accurate account. In particular, I observe that (i) the role of gravity in entropy calculations must be distinguished from the entropy of gravity, that (ii) although gravitational collapse is entropy-increasing, this is not…Read more
  •  55
    I argue that the metaphysical import of the Aharonov-Bohm effect has been overstated: correctly understood, it does not require either rejection of gauge invariance or any novel form of nonlocality. The conclusion that it does require one or the other follows from a failure to keep track, in the analysis, of the complex scalar field to which the magnetic vector potential is coupled. Once this is recognised, the way is clear to a local account of the ontology of electrodynamics ; I sketch a possi…Read more
  •  123
    What is Orthodox Quantum Mechanics?
    In Alberto Cordero (ed.), Philosophers Look at Quantum Mechanics, Springer Verlag. 2019.
    What is called ``orthodox'' quantum mechanics, as presented in standard foundational discussions, relies on two substantive assumptions --- the projection postulate and the eigenvalue-eigenvector link --- that do not in fact play any part in practical applications of quantum mechanics. I argue for this conclusion on a number of grounds, but primarily on the grounds that the projection postulate fails correctly to account for repeated, continuous and unsharp measurements and that the eigenvalue-e…Read more
  •  886
    Time-dependent symmetries: the link between gauge symmetries and indeterminism
    In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections, Cambridge University Press. pp. 163--173. 2002.
    Mathematically, gauge theories are extraordinarily rich --- so rich, in fact, that it can become all too easy to lose track of the connections between results, and become lost in a mass of beautiful theorems and properties: indeterminism, constraints, Noether identities, local and global symmetries, and so on. One purpose of this short article is to provide some sort of a guide through the mathematics, to the conceptual core of what is actually going on. Its focus is on the Lagrangian, variatio…Read more
  •  153
    David Wallace argues that we should take quantum theory seriously as an account of what the world is like--which means accepting the idea that the universe is constantly branching into new universes. He presents an accessible but rigorous account of the 'Everett interpretation', the best way to make coherent sense of quantum physics
  •  590
    QFT, antimatter, and symmetry
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (3): 209-222. 2009.
    A systematic analysis is made of the relations between the symmetries of a classical field and the symmetries of the one-particle quantum system that results from quantizing that field in regimes where interactions are weak. The results are applied to gain a greater insight into the phenomenon of antimatter.
  •  44
    It seems to be widely assumed that the only effect of the Ghirardi-Rimini-Weber dynamical collapse mechanism on the `tails' of the wavefunction is to reduce their weight. In consequence it seems to be generally accepted that the tails behave exactly as do the various branches in the Everett interpretation except for their much lower weight. These assumptions are demonstrably inaccurate: the collapse mechanism has substantial and detectable effects within the tails. The relevance of this misconce…Read more
  •  266
    Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (3): 415-439. 2003.
    An analysis is made of Deutsch's recent claim to have derived the Born rule from decision-theoretic assumptions. It is argued that Deutsch's proof must be understood in the explicit context of the Everett interpretation, and that in this context, it essentially succeeds. Some comments are made about the criticism of Deutsch's proof by Barnum, Caves, Finkelstein, Fuchs, and Schack; it is argued that the flaw which they point out in the proof does not apply if the Everett interpretation is assumed…Read more
  •  238
    A formal proof of the born rule from decision-theoretic assumptions [aka: How to Prove the Born Rule]
    In Simon Saunders, Jon Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality, Oxford University Press. 2009.
    I develop the decision-theoretic approach to quantum probability, originally proposed by David Deutsch, into a mathematically rigorous proof of the Born rule in (Everett-interpreted) quantum mechanics. I sketch the argument informally, then prove it formally, and lastly consider a number of proposed ``counter-examples'' to show exactly which premises of the argument they violate. (This is a preliminary version of a chapter to appear --- under the title ``How to prove the Born Rule'' --- in Saund…Read more
  •  266
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence theory to modern attempts t…Read more
  •  221
    Solving the measurement problem: De broglie-Bohm loses out to Everett (review)
    Foundations of Physics 35 (4): 517-540. 2004.
    The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation.
  •  207
    Non-locality and Gauge Freedom in Deutsch and Hayden’s Formulation of Quantum Mechanics
    with Christopher G. Timpson
    Foundations of Physics 37 (6): 951-955. 2007.
    Deutsch and Hayden have proposed an alternative formulation of quantum mechanics which is completely local. We argue that their proposal must be understood as having a form of ‘gauge freedom’ according to which mathematically distinct states are physically equivalent. Once this gauge freedom is taken into account, their formulation is no longer local
  • How to prove the Born rule
    In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality, Oxford University Press. 2010.
  •  229
    Everett and structure
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1): 87-105. 2003.
    I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines, and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop…Read more
  •  227
    Worlds in the Everett interpretation
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4): 637-661. 2002.
    This is a discussion of how we can understand the world-view given to us by the Everett interpretation of quantum mechanics, and in particular the role played by the concept of 'world'. The view presented is that we are entitled to use 'many-worlds' terminology even if the theory does not specify the worlds in the formalism; this is defended by means of an extensive analogy with the concept of an 'instant' or moment of time in relativity, with the lack of a preferred foliation of spacetime being…Read more
  •  310
    Branching and Uncertainty
    British Journal for the Philosophy of Science 59 (3): 293-305. 2008.
    Following Lewis, it is widely held that branching worlds differ in important ways from diverging worlds. There is, however, a simple and natural semantics under which ordinary sentences uttered in branching worlds have much the same truth values as they conventionally have in diverging worlds. Under this semantics, whether branching or diverging, speakers cannot say in advance which branch or world is theirs. They are uncertain as to the outcome. This same semantics ensures the truth of utteranc…Read more
  •  290
    The logic of the past hypothesis
    In Barry Loewer, Brad Weslake & Eric B. Winsberg (eds.), The Probability Map of the Universe: Essays on David Albert’s _time and Chance_, Harvard University Press. pp. 76-109. 2023.
    I attempt to get as clear as possible on the chain of reasoning by which irreversible macrodynamics is derivable from time-reversible microphysics, and in particular to clarify just what kinds of assumptions about the initial state of the universe, and about the nature of the microdynamics, are needed in these derivations. I conclude that while a “Past Hypothesis” about the early Universe does seem necessary to carry out such derivations, that Hypothesis is not correctly understood as a constrai…Read more