•  40
    I contrast two possible attitudes towards a given branch of physics: as inferential, and as dynamical. I contrast these attitudes in classical statistical mechanics, in quantum mechanics, and in quantum statistical mechanics; in this last case, I argue that the quantum-mechanical and statistical-mechanical aspects of the question become inseparable. Along the way various foundational issues in statistical and quantum physics are illuminated.
  •  32
    Brian Pitts has recently claimed to show via straightforward calculation that, at least in the case of Hamiltonian electromagnetism, an arbitrary first-class constraint ``generates not a gauge transformation, but a bad physical change'' (Annals of Physics 351 (2014) pp.382-406; arXiv:1310.2756). We show, via a straightforward calculation, that a transformation generated by an arbitrary first-class constraint relates gauge-equivalent phase space points, vindicating orthodoxy. Pitts, however, is p…Read more
  •  27
    15. Richard Taylor’s “Fatalism” and the Semantics of Physical Modality
    In David Foster Wallace, Steven M. Cahn & Maureen Eckert (eds.), Fate, Time, and Language: An Essay on Free Will, Columbia University Press. pp. 141-216. 2010.
  •  22
    The working assumption amongst most philosophers of QFT appears to be that algebraic QFT, and not the "Lagrangian" QFT of the working physicist, is the proper object of philosophical and foundational study. I argue that this assumption is unmotivated, and fails to take into account important features of the post-1960s development of Lagrangian QFT. From a modern perspective the two forms of QFT are better seen as rival research programs than as variant formulations of one theory; furthermore, th…Read more
  • How to prove the Born rule
    In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality, Oxford University Press. 2010.
  • Inferential versus dynamical conceptions of physics
    In Olimpia Lombardi, Sebastian Fortin, Federico Holik & Cristian López (eds.), What is Quantum Information?, Cup. 2017.