•  55
    The paper presents two case studies of multi-agent information exchange involving generalized quantifiers. We focus on scenarios in which agents successfully converge to knowledge on the basis of the information about the knowledge of others, so-called Muddy Children puzzle and Top Hat puzzle. We investigate the relationship between certain invariance properties of quantifiers and the successful convergence to knowledge in such situations. We generalize the scenarios to account for public announce…Read more
  •  42
    Understanding Quantifiers in Language
    with Marcin Zajenkowski
    We compare time needed for understanding different types of quantifiers. We show that the computational distinction between quantifiers recognized by finite-automata and pushdown automata is psychologically relevant. Our research improves upon hypothesis and explanatory power of recent neuroimaging studies as well as provides evidence for the claim that human linguistic abilities are constrained by computational complexity.
  •  74
    A remark on collective quantification
    with Juha Kontinen
    Journal of Logic, Language and Information 17 (2): 131-140. 2008.
    We consider collective quantification in natural language. For many years the common strategy in formalizing collective quantification has been to define the meanings of collective determiners, quantifying over collections, using certain type-shifting operations. These type-shifting operations, i.e., lifts, define the collective interpretations of determiners systematically from the standard meanings of quantifiers. All the lifts considered in the literature turn out to be definable in second-or…Read more
  •  66
    Contribution of Working Memory in the Parity and Proportional Judgments
    with Marcin Zajenkowski
    Belgian Journal of Linguistics 25 189-206. 2011.
    The paper presents an experimental evidence on differences in the sentence-picture verification under additional memory load between parity and proportional quantifiers. We asked subjects to memorize strings of 4 or 6 digits, then to decide whether a quantifier sentence is true at a given picture, and finally to recall the initially given string of numbers. The results show that: (a) proportional quantifiers are more difficult than parity quantifiers with respect to reaction time and accuracy; (b) mainta…Read more
  •  98
    In the dissertation we study the complexity of generalized quantifiers in natural language. Our perspective is interdisciplinary: we combine philosophical insights with theoretical computer science, experimental cognitive science and linguistic theories. In Chapter 1 we argue for identifying a part of meaning, the so-called referential meaning (model-checking), with algorithms. Moreover, we discuss the influence of computational complexity theory on cognitive tasks. We give some arguments to tre…Read more
  •  35
    We discuss McMillan et al. (2005) paper devoted to study brain activity during comprehension of sentences with generalized quantifiers. According to the authors their results verify a particular computational model of natural language quantifier comprehension posited by several linguists and logicians (e. g. see van Benthem, 1986). We challenge this statement by invoking the computational difference between first-order quantifiers and divisibility quantifiers (e. g. see Mostowski, 1998). Moreover, we …Read more
  •  157
    Branching Quantification v. Two-way Quantification
    Journal of Semantics 26 (4): 329-366. 2009.
    Next SectionWe discuss the thesis formulated by Hintikka (1973) that certain natural language sentences require non-linear quantification to express their meaning. We investigate sentences with combinations of quantifiers similar to Hintikka's examples and propose a novel alternative reading expressible by linear formulae. This interpretation is based on linguistic and logical observations. We report on our experiments showing that people tend to interpret sentences similar to Hintikka sentence …Read more
  •  72
    We study definability of second-order generalized quantifiers. We show that the question whether a second-order generalized quantifier $\sQ_1$ is definable in terms of another quantifier $\sQ_2$, the base logic being monadic second-order logic, reduces to the question if a quantifier $\sQ^{\star}_1$ is definable in $\FO(\sQ^{\star}_2,<,+,\times)$ for certain first-order quantifiers $\sQ^{\star}_1$ and $\sQ^{\star}_2$. We use our characterization to show new definability and non-definability r…Read more
  •  44
    Improving Methodology of Quantifier Comprehension Experiments
    with Marcin Zajenkowski
    Neuropsychologia 47 (12): 2682--2683. 2009.
    Szymanik (2007) suggested that the distinction between first-order and higher-order quantifiers does not coincide with the computational resources required to compute the meaning of quantifiers. Cognitive difficulty of quantifier processing might be better assessed on the basis of complexity of the minimal corresponding automata. For example, both logical and numerical quantifiers are first-order. However, computational devices recognizing logical quantifiers have a fixed number of states while…Read more
  •  85
    Computational complexity of some Ramsey quantifiers in finite models
    Bulletin of Symbolic Logic 13 281--282. 2007.
    The problem of computational complexity of semantics for some natural language constructions – considered in [M. Mostowski, D. Wojtyniak 2004] – motivates an interest in complexity of Ramsey quantifiers in finite models. In general a sentence with a Ramsey quantifier R of the following form Rx, yH(x, y) is interpreted as ∃A(A is big relatively to the universe ∧A2 ⊆ H). In the paper cited the problem of the complexity of the Hintikka sentence is reduced to the problem of computational complexity …Read more
  •  70
    This volume on the semantic complexity of natural language explores the question why some sentences are more difficult than others. While doing so, it lays the groundwork for extending semantic theory with computational and cognitive aspects by combining linguistics and logic with computations and cognition. -/- Quantifier expressions occur whenever we describe the world and communicate about it. Generalized quantifier theory is therefore one of the basic tools of linguistics today, studying th…Read more
  •  191
    We study the computational complexity of polyadic quantifiers in natural language. This type of quantification is widely used in formal semantics to model the meaning of multi-quantifier sentences. First, we show that the standard constructions that turn simple determiners into complex quantifiers, namely Boolean operations, iteration, cumulation, and resumption, are tractable. Then, we provide an insight into branching operation yielding intractable natural language multi-quantifier expressions…Read more
  •  84
    Hintikka's thesis revisited
    Bulletin of Symbolic Logic 13 273. 2007.
    We discuss Hintikka’s Thesis [Hintikka 1973] that there exist natural language sentences which require non–linear quantification to express their logical form.
  •  49
    Pragmatic identification of the witness sets
    with Livio Robaldo
    Proceeding of the 8th Conference on Language Resources and Evaluation. 2012.
    Among the readings available for NL sentences, those where two or more sets of entities are independent of one another are particularly challenging from both a theoretical and an empirical point of view. Those readings are termed here as ‘Independent Set (IS) readings'. Standard examples of such readings are the well-known Collective and Cumulative Readings. (Robaldo, 2011) proposes a logical framework that can properly represent the meaning of IS readings in terms of a set-Skolemization of the …Read more