•  58
    Projective wellorders and mad families with large continuum
    with Vera Fischer and Lyubomyr Zdomskyy
    Annals of Pure and Applied Logic 162 (11): 853-862. 2011.
    We show that is consistent with the existence of a -definable wellorder of the reals and a -definable ω-mad subfamily of [ω]ω
  •  10
    $0\sp \#$ and inner models (review)
    Journal of Symbolic Logic 67 (3): 924-932. 2002.
  •  227
    The genericity conjecture
    Journal of Symbolic Logic 59 (2): 606-614. 1994.
  •  60
    Universally baire sets and definable well-orderings of the reals
    Journal of Symbolic Logic 68 (4): 1065-1081. 2003.
    Let n ≥ 3 be an integer. We show that it is consistent (relative to the consistency of n - 2 strong cardinals) that every $\Sigma_n^1-set$ of reals is universally Baire yet there is a (lightface) projective well-ordering of the reals. The proof uses "David's trick" in the presence of inner models with strong cardinals
  •  33
    Generic saturation
    Journal of Symbolic Logic 63 (1): 158-162. 1998.
  •  42
    Cardinal-preserving extensions
    Journal of Symbolic Logic 68 (4): 1163-1170. 2003.
    A classic result of Baumgartner-Harrington-Kleinberg [1] implies that assuming CH a stationary subset of ω1 has a CUB subset in a cardinal-perserving generic extension of V, via a forcing of cardinality ω1. Therefore, assuming that $\omega_2^L$ is countable: { $X \in L \mid X \subseteq \omega_1^L$ and X has a CUB subset in a cardinal -preserving extension of L} is constructible, as it equals the set of constructible subsets of $\omega_1^L$ which in L are stationary. Is there a similar such resul…Read more
  •  56
    Coding without fine structure
    Journal of Symbolic Logic 62 (3): 808-815. 1997.
  •  33
    An elementary approach to the fine structure of L
    with Peter Koepke
    Bulletin of Symbolic Logic 3 (4): 453-468. 1997.
    We present here an approach to the fine structure of L based solely on elementary model theoretic ideas, and illustrate its use in a proof of Global Square in L. We thereby avoid the Lévy hierarchy of formulas and the subtleties of master codes and projecta, introduced by Jensen [3] in the original form of the theory. Our theory could appropriately be called ”Hyperfine Structure Theory”, as we make use of a hierarchy of structures and hull operations which refines the traditional Lα -or Jα-seque…Read more
  •  810
    The Search for New Axioms in the Hyperuniverse Programme
    In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics, Springer International Publishing. pp. 165-188. 2016.
    The Hyperuniverse Programme, introduced in Arrigoni and Friedman (2013), fosters the search for new set-theoretic axioms. In this paper, we present the procedure envisaged by the programme to find new axioms and the conceptual framework behind it. The procedure comes in several steps. Intrinsically motivated axioms are those statements which are suggested by the standard concept of set, i.e. the `maximal iterative concept', and the programme identifies higher-order statements motivated by the ma…Read more
  •  432
    Definable well-orders of $H(\omega _2)$ and $GCH$
    Journal of Symbolic Logic 77 (4): 1101-1121. 2012.
    Assuming ${2^{{N_0}}}$ = N₁ and ${2^{{N_1}}}$ = N₂, we build a partial order that forces the existence of a well-order of H(ω₂) lightface definable over ⟨H(ω₂), Є⟩ and that preserves cardinal exponentiation and cofinalities.
  •  12
    The internal consistency of Easton’s theorem
    with Pavel Ondrejovič
    Annals of Pure and Applied Logic 156 (2): 259-269. 2008.
    An Easton function is a monotone function C from infinite regular cardinals to cardinals such that C has cofinality greater than α for each infinite regular cardinal α. Easton showed that assuming GCH, if C is a definable Easton function then in some cofinality-preserving extension, C=2α for all infinite regular cardinals α. Using “generic modification”, we show that over the ground model L, models witnessing Easton’s theorem can be obtained as inner models of L[0#], for Easton functions which a…Read more
  •  25
    On Absoluteness of Categoricity in Abstract Elementary Classes
    with Martin Koerwien
    Notre Dame Journal of Formal Logic 52 (4): 395-402. 2011.
    Shelah has shown that $\aleph_1$-categoricity for Abstract Elementary Classes (AECs) is not absolute in the following sense: There is an example $K$ of an AEC (which is actually axiomatizable in the logic $L(Q)$) such that if $2^{\aleph_0}
  • Generalizations of Gödel's universe of constructible sets
    In Kurt Gödel, Solomon Feferman, Charles Parsons & Stephen G. Simpson (eds.), Kurt Gödel: Essays for His Centennial, Association For Symbolic Logic. 2010.
  •  33
    Analytic equivalence relations and bi-embeddability
    with Sy-David Friedman and Luca Motto Ros
    Journal of Symbolic Logic 76 (1). 2011.
    Louveau and Rosendal [5] have shown that the relation of bi-embeddability for countable graphs as well as for many other natural classes of countable structures is complete under Borel reducibility for analytic equivalence relations. This is in strong contrast to the case of the isomorphism relation, which as an equivalence relation on graphs (or on any class of countable structures consisting of the models of a sentence of L ω ₁ ω ) is far from complete (see [5, 2]). In this article we strength…Read more
  •  30
    Large cardinals and gap-1 morasses
    with Andrew D. Brooke-Taylor
    Annals of Pure and Applied Logic 159 (1-2): 71-99. 2009.
    We present a new partial order for directly forcing morasses to exist that enjoys a significant homogeneity property. We then use this forcing in a reverse Easton iteration to obtain an extension universe with morasses at every regular uncountable cardinal, while preserving all n-superstrong , hyperstrong and 1-extendible cardinals. In the latter case, a preliminary forcing to make the GCH hold is required. Our forcing yields morasses that satisfy an extra property related to the homogeneity of …Read more
  •  23
    The tree property at א ω+2
    with Ajdin Halilović
    Journal of Symbolic Logic 76 (2). 2011.
    Assuming the existence of a weakly compact hypermeasurable cardinal we prove that in some forcing extension א ω is a strong limit cardinal and א ω+2 has the tree property. This improves a result of Matthew Foreman (see [2])
  •  67
    Foundational implications of the inner model hypothesis
    Annals of Pure and Applied Logic 163 (10): 1360-1366. 2012.
  •  47
    Perfect trees and elementary embeddings
    with Katherine Thompson
    Journal of Symbolic Logic 73 (3): 906-918. 2008.
    An important technique in large cardinal set theory is that of extending an elementary embedding j: M → N between inner models to an elementary embedding j*: M[G] → N[G*] between generic extensions of them. This technique is crucial both in the study of large cardinal preservation and of internal consistency. In easy cases, such as when forcing to make the GCH hold while preserving a measurable cardinal (via a reverse Easton iteration of α-Cohen forcing for successor cardinals α), the generic G*…Read more
  • Isomorphism on hyp
    Journal of Symbolic Logic 81 (2): 395-399. 2016.
  •  22
    Easton’s theorem and large cardinals
    with Radek Honzik
    Annals of Pure and Applied Logic 154 (3): 191-208. 2008.
    The continuum function αmaps to2α on regular cardinals is known to have great freedom. Let us say that F is an Easton function iff for regular cardinals α and β, image and α
  •  33
    Homogeneous iteration and measure one covering relative to HOD
    with Natasha Dobrinen
    Archive for Mathematical Logic 47 (7-8): 711-718. 2008.
    Relative to a hyperstrong cardinal, it is consistent that measure one covering fails relative to HOD. In fact it is consistent that there is a superstrong cardinal and for every regular cardinal κ, κ + is greater than κ + of HOD. The proof uses a very general lemma showing that homogeneity is preserved through certain reverse Easton iterations
  •  50
    Hyperfine Structure Theory and Gap 1 Morasses
    with Peter Koepke and Boris Piwinger
    Journal of Symbolic Logic 71 (2). 2006.
    Using the Friedman-Koepke Hyperfine Structure Theory of [2], we provide a short construction of a gap 1 morass in the constructible universe
  •  48
    Large cardinals and locally defined well-orders of the universe
    Annals of Pure and Applied Logic 157 (1): 1-15. 2009.
    By forcing over a model of with a class-sized partial order preserving this theory we produce a model in which there is a locally defined well-order of the universe; that is, one whose restriction to all levels H is a well-order of H definable over the structure H, by a parameter-free formula. Further, this forcing construction preserves all supercompact cardinals as well as all instances of regular local supercompactness. It is also possible to define variants of this construction which, in add…Read more
  •  33
    The number of normal measures
    with Menachem Magidor
    Journal of Symbolic Logic 74 (3): 1069-1080. 2009.
    There have been numerous results showing that a measurable cardinal κ can carry exactly α normal measures in a model of GCH, where a is a cardinal at most κ⁺⁺. Starting with just one measurable cardinal, we have [9] (for α = 1), [10] (for α = κ⁺⁺, the maximum possible) and [1] (for α = κ⁺, after collapsing κ⁺⁺) . In addition, under stronger large cardinal hypotheses, one can handle the remaining cases: [12] (starting with a measurable cardinal of Mitchell order α ) , [2] (as in [12], but where κ…Read more
  •  55
    On Borel equivalence relations in generalized Baire space
    with Tapani Hyttinen
    Archive for Mathematical Logic 51 (3-4): 299-304. 2012.
    We construct two Borel equivalence relations on the generalized Baire space κκ, κ ω, with the property that neither of them is Borel reducible to the other. A small modification of the construction shows that the straightforward generalization of the Glimm-Effros dichotomy fails.
  •  29
    Hypermachines
    with P. D. Welch
    Journal of Symbolic Logic 76 (2). 2011.
    The Infinite Time Turing Machine model [8] of Hamkins and Kidder is, in an essential sense, a "Σ₂-machine" in that it uses a Σ₂ Liminf Rule to determine cell values at limit stages of time. We give a generalisation of these machines with an appropriate Σ n rule. Such machines either halt or enter an infinite loop by stage ζ(n) = df μζ(n)[∃Σ(n) > ζ(n) L ζ(n) ≺ Σn L Σ(n) ], again generalising precisely the ITTM case. The collection of such machines taken together computes precisely those reals of …Read more