•  120
    Correlations, Contextuality and Quantum Logic
    Journal of Philosophical Logic 42 (3): 483-499. 2013.
    Quantum theory is a probabilistic theory that embodies notoriously striking correlations, stronger than any that classical theories allow but not as strong as those of hypothetical ‘super-quantum’ theories. This raises the question ‘Why the quantum?’—whether there is a handful of principles that account for the character of quantum probability. We ask what quantum-logical notions correspond to this investigation. This project isn’t meant to compete with the many beautiful results that informatio…Read more
  •  21
    Why the Tsirelson bound?
    In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics, Springer. pp. 167--185. 2012.
  •  115
    A uniqueness theorem for ‘no collapse’ interpretations of quantum mechanics
    with Rob Clifton
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (2): 181-219. 1996.
    We prove a uniqueness theorem showing that, subject to certain natural constraints, all 'no collapse' interpretations of quantum mechanics can be uniquely characterized and reduced to the choice of a particular preferred observable as determine (definite, sharp). We show how certain versions of the modal interpretation, Bohm's 'causal' interpretation, Bohr's complementarity interpretation, and the orthodox (Dirac-von Neumann) interpretation without the projection postulate can be recovered from …Read more
  •  70
    On Bohr's response to EPR: II (review)
    Foundations of Physics 20 (8): 929-941. 1990.
    In my reconstruction of Bohr's reply to the Einstein-Podolsky-Rosen argument, I pointed out that Bohr showed explicitly, within the framework of the complementarity interpretation, how a locally maximal measurement on a subsystem S2 of a composite system S1+S2, consisting of two spatially separated subsystems, can make determinate both a locally maximal Boolean subalgebra for S2 and a locally maximal Boolean subalgebra for S1. As it stands, this response is open to an objection. In this note, I …Read more
  •  30
    Measurement and “beables” in quantum mechanics
    Foundations of Physics 21 (1): 25-42. 1991.
    It is argued that the measurement problem reduces to the problem of modeling quasi-classical systems in a modified quantum mechanics with superselection rules. A measurement theorem is proved, demonstrating, on the basis of a principle for selecting the quantities of a system that are determinate (i.e., have values) in a given state, that after a suitable interaction between a systemS and a quasi-classical systemM, essentially only the quantity measured in the interaction and the indicator quant…Read more
  • The Interpretation of Quantum Mechanics
    Erkenntnis 12 (3): 399-402. 1978.