Boston, Massachusetts, United States of America
  •  86
    Simulations using idealized numerical models can often generate behaviors or patterns that are visually very similar to the natural phenomenon being investigated and to be explained. The question arises, when should these model simulations be taken to provide an explanation for why the natural phenomena exhibit the patterns that they do? An important distinction for answering this question is that between ‘how-possibly’ explanations and ‘how-actually’ explanations. Despite the importance of this…Read more
  •  78
    Bohr's correspondence principle
    Stanford Encyclopedia of Philosophy. forthcoming.
  •  96
    Pluto and the 'Planet Problem': Folk Concepts and Natural Kinds in Astronomy
    Perspectives on Science 22 (4): 464-490. 2014.
    The 2006 decision by the International Astronomical Union to strip Pluto of its status as a planet generated considerable uproar not only in scientific circles, but among the lay public as well. After all, how can a vote by 424 scientists in a conference room in Prague undermine what every well-educated second grader knows is a scientific fact? The Pluto controversy provides a new and fertile ground in which to revisit the traditional philosophical problems of natural kinds and scientific change…Read more
  •  56
    Although predictive power and explanatory insight are both desiderata of scientific models, these features are often in tension with each other and cannot be simultaneously maximized. In such situations, scientists may adopt what I term a ‘division of cognitive labor’ among models, using different models for the purposes of explanation and prediction, respectively, even for the exact same phenomenon being investigated. Adopting this strategy raises a number of issues, however, which have receive…Read more
  •  92
    Heisenberg Meets Kuhn: Closed Theories and Paradigms
    Philosophy of Science 73 (1): 90-107. 2006.
    The aim of this paper is to examine in detail the similarities and dissimilarities between Werner Heisenberg’s account of closed theories and Thomas Kuhn’s model of scientific revolutions. My analysis draws on a little‐known discussion that took place between Heisenberg and Kuhn in 1963, in which Heisenberg, having just read Kuhn’s Structure of Scientific Revolutions, compares Kuhn’s views to his own account of closed theories. I conclude that while Heisenberg and Kuhn share a holist conception …Read more
  •  232
    Rethinking thought experiments
    Perspectives on Science 9 (3): 285-307. 2001.
    : An examination of two thought experiments in contemporary physics reveals that the same thought experiment can be reanalyzed from the perspective of different and incompatible theories. This fact undermines those accounts of thought experiments that claim their justificatory power comes from their ability to reveal the laws of nature. While thought experiments do play a genuine evaluative role in science, they do so by testing the nonempirical virtues of a theory, such as consistency and expla…Read more
  •  1061
    Maxwell, Helmholtz, and the unreasonable effectiveness of the method of physical analogy
    Studies in History and Philosophy of Science Part A 50 28-37. 2015.
    The fact that the same equations or mathematical models reappear in the descriptions of what are otherwise disparate physical systems can be seen as yet another manifestation of Wigner's “unreasonable effectiveness of mathematics.” James Clerk Maxwell famously exploited such formal similarities in what he called the “method of physical analogy.” Both Maxwell and Hermann von Helmholtz appealed to the physical analogies between electromagnetism and hydrodynamics in their development of these theor…Read more
  •  2
    Book Review (review)
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (4): 368-370. 2010.
  •  34
    The Evolving Concepts of Nature, Time, and Causation
    Metascience 15 (1): 183-186. 2006.
  •  138
    Paul dirac and the Einstein-Bohr debate
    Perspectives on Science 16 (1): 103-114. 2008.
    : Although Dirac rarely participated in the interpretational debates over quantum theory, it is traditionally assumed that his views were aligned with Heisenberg and Bohr in the so-called Copenhagen-Göttingen camp. However, an unpublished—and apparently unknown—lecture of Dirac's reveals that this view is mistaken; in the famous debate between Einstein and Bohr, Dirac sided with Einstein. Surprisingly, Dirac believed that quantum mechanics was not complete, that the uncertainty principle would n…Read more
  •  142
    Horizontal models: From bakers to cats
    Philosophy of Science 70 (3): 609-627. 2003.
    At the center of quantum chaos research is a particular family of models known as quantum maps. These maps illustrate an important “horizontal” dimension to model construction that has been overlooked in the literature on models. Three ways in which quantum maps are being used to clarify the relationship between classical and quantum mechanics are examined. This study suggests that horizontal models may provide a new and fruitful framework for exploring intertheoretic relations.
  •  74
    A. Douglas Stone. Einstein and the Quantum: The Quest of the Valiant Swabian. (review)
    Hopos: The Journal of the International Society for the History of Philosophy of Science 5 (1): 177-79. 2015.
    While everyone knows of Einstein’s brilliant work on relativity theory and many know of his later opposition to quantum theory as immortalized in his remark “He [God] does not play dice,” few outside of limited academic circles know of Einstein’s many seminal contributions to the development of quantum theory. In this highly accessible and enjoyable popular science book, Douglas Stone seeks to revise our popular conception of Einstein and bring the story of his profound and revolutionary insight…Read more
  •  23
    Classical mechanics and quantum mechanics are two of the most successful scientific theories ever discovered, and yet how they can describe the same world is far from clear: one theory is deterministic, the other indeterministic; one theory describes a world in which chaos is pervasive, the other a world in which chaos is absent. Focusing on the exciting field of 'quantum chaos', this book reveals that there is a subtle and complex relation between classical and quantum mechanics. It challenges …Read more
  •  133
    Metaphysical Indeterminacy, Properties, and Quantum Theory
    Res Philosophica 91 (3): 449-475. 2014.
    It has frequently been suggested that quantum mechanics may provide a genuine case of ontic vagueness or metaphysical indeterminacy. However, discussions of quantum theory in the vagueness literature are often cursory and, as I shall argue, have in some respects been misguided. Hitherto much of the debate over ontic vagueness and quantum theory has centered on the “indeterminate identity” construal of ontic vagueness, and whether the quantum phenomenon of entanglement produces particles whose id…Read more