•  20
    Structure learning algorithms for graphical models have focused almost exclusively on stable environments in which the underlying generative process does not change; that is, they assume that the generating model is globally stationary. In real-world environments, however, such changes often occur without warning or signal. Real-world data often come from generating models that are only locally stationary. In this paper, we present LoSST, a novel, heuristic structure learning algorithm that trac…Read more
  •  45
    Many different, seemingly mutually exclusive, theories of categorization have been proposed in recent years. The most notable theories have been those based on prototypes, exemplars, and causal models. This chapter provides “representation theorems” for each of these theories in the framework of probabilistic graphical models. More specifically, it shows for each of these psychological theories that the categorization judgments predicted and explained by the theory can be wholly captured using p…Read more
  •  80
    It is “well known” that in linear models: (1) testable constraints on the marginal distribution of observed variables distinguish certain cases in which an unobserved cause jointly influences several observed variables; (2) the technique of “instrumental variables” sometimes permits an estimation of the influence of one variable on another even when the association between the variables may be confounded by unobserved common causes; (3) the association (or conditional probability distribution of…Read more
  •  25
    The Rescorla–Wagner model has been a leading theory of animal causal induction for nearly 30 years, and human causal induction for the past 15 years. Recent theories 367) have provided alternative explanations of how people draw causal conclusions from covariational data. However, theoretical attempts to compare the Rescorla–Wagner model with more recent models have been hampered by the fact that the Rescorla–Wagner model is an algorithmic theory, while the more recent theories are all computati…Read more
  •  28
    Rate-Agnostic Structure Learning
    with Sergey Pils, Cynthia Freeman, and Vince Calhoun
    Causal structure learning from time series data is a major scientific challenge. Existing algorithms assume that measurements occur sufficiently quickly; more precisely, they assume that the system and measurement timescales are approximately equal. In many scientific domains, however, measurements occur at a significantly slower rate than the underlying system changes. Moreover, the size of the mismatch between timescales is often unknown. This paper provides three distinct causal structure lea…Read more
  •  27
    It is the height of banality to observe that people, not bullets, fight kinetic wars. The machinery of kinetic warfare is obviously relevant to the conduct of each particular act of warfare, but the reasons for, and meanings of, those acts depend critically on the fact that they are done by humans. Any attempt to understand warfare—its causes, strategies, legitimacy, dynamics, and resolutions—must incorporate humans as an intrinsic part, both descriptively and normatively. Humans from general st…Read more
  •  94
    Biological codes and topological causation
    Philosophy of Science 75 (3): 259-277. 2008.
    Various causal details of the genetic process of translation have been singled out to account for its privileged status as a ‘code'. We explicate the biological uses of coding talk by characterizing a class of special causal processes in which topological properties are the causally relevant ones. This class contains both the process of translation and communication theoretic coding processes as special cases. We propose a formalism in terms of graphs for expressing our theory of biological code…Read more
  •  41
    The Moral Permissibility of Automated Responses during Cyberwarfare
    with Joseph H. Danks
    Journal of Military Ethics 12 (1): 18-33. 2013.
  •  36
    Causal structure learning algorithms have focused on learning in ”batch-mode”: i.e., when a full dataset is presented. In many domains, however, it is important to learn in an online fashion from sequential or ordered data, whether because of memory storage constraints or because of potential changes in the underlying causal structure over the course of learning. In this paper, we present TDSL, a novel causal structure learning algorithm that processes data sequentially. This algorithm can track…Read more