• How to prove the Born rule
    In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality, Oxford University Press. 2010.
  •  229
    Everett and structure
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1): 87-105. 2003.
    I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines, and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop…Read more
  •  227
    Worlds in the Everett interpretation
    Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4): 637-661. 2002.
    This is a discussion of how we can understand the world-view given to us by the Everett interpretation of quantum mechanics, and in particular the role played by the concept of 'world'. The view presented is that we are entitled to use 'many-worlds' terminology even if the theory does not specify the worlds in the formalism; this is defended by means of an extensive analogy with the concept of an 'instant' or moment of time in relativity, with the lack of a preferred foliation of spacetime being…Read more
  •  310
    Branching and Uncertainty
    British Journal for the Philosophy of Science 59 (3): 293-305. 2008.
    Following Lewis, it is widely held that branching worlds differ in important ways from diverging worlds. There is, however, a simple and natural semantics under which ordinary sentences uttered in branching worlds have much the same truth values as they conventionally have in diverging worlds. Under this semantics, whether branching or diverging, speakers cannot say in advance which branch or world is theirs. They are uncertain as to the outcome. This same semantics ensures the truth of utteranc…Read more
  •  290
    The logic of the past hypothesis
    In Barry Loewer, Brad Weslake & Eric B. Winsberg (eds.), The Probability Map of the Universe: Essays on David Albert’s _time and Chance_, Harvard University Press. pp. 76-109. 2023.
    I attempt to get as clear as possible on the chain of reasoning by which irreversible macrodynamics is derivable from time-reversible microphysics, and in particular to clarify just what kinds of assumptions about the initial state of the universe, and about the nature of the microdynamics, are needed in these derivations. I conclude that while a “Past Hypothesis” about the early Universe does seem necessary to carry out such derivations, that Hypothesis is not correctly understood as a constrai…Read more
  •  296
    Quantum Mechanics on Spacetime I: Spacetime State Realism
    with Christopher Gordon Timpson
    British Journal for the Philosophy of Science 61 (4): 697-727. 2010.
    What ontology does realism about the quantum state suggest? The main extant view in contemporary philosophy of physics is wave-function realism . We elaborate the sense in which wave-function realism does provide an ontological picture, and defend it from certain objections that have been raised against it. However, there are good reasons to be dissatisfied with wave-function realism, as we go on to elaborate. This motivates the development of an opposing picture: what we call spacetime state re…Read more
  •  219
    Review of Laura Ruetsche's "Interpreting quantum theories" (review)
    British Journal for the Philosophy of Science 65 (2): 425-428. 2014.
  •  160
    Decoherence and Ontology (or: How I learned to stop worrying and love FAPP)
    In Simon Saunders, Jon Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality, Oxford University Press. pp. 53--72. 2010.
    NGC 1300 (shown in figure 1) is a spiral galaxy 65 million light years from Earth.1 We have never been there, and (although I would love to be wrong about this) we will never go there; all we will ever know about NGC 1300 is what we can see of it from sixty-five million light years away, and what we can infer from our best physics. Fortunately, “what we can infer from our best physics” is actually quite a lot. To take a particular example: our best theory of galaxies tells us that that hazy glow…Read more