•  3169
    Let f(1)=2, f(2)=4, and let f(n+1)=f(n)! for every integer n≥2. Edmund Landau's conjecture states that the set P(n^2+1) of primes of the form n^2+1 is infinite. Landau's conjecture implies the following unproven statement Φ: card(P(n^2+1))<ω ⇒ P(n^2+1)⊆[2,f(7)]. Let B denote the system of equations: {x_j!=x_k: i,k∈{1,...,9}}∪{x_i⋅x_j=x_k: i,j,k∈{1,...,9}}. The system of equations {x_1!=x_1, x_1 \cdot x_1=x_2, x_2!=x_3, x_3!=x_4, x_4!=x_5, x_5!=x_6, x_6!=x_7, x_7!=x_8, x_8!=x_9} has exactly two s…Read more
  •  1172
    Two conjectures on the arithmetic in ℝ and ℂ†
    Mathematical Logic Quarterly 56 (2): 175-184. 2010.
    Let G be an additive subgroup of ℂ, let Wn = {xi = 1, xi + xj = xk: i, j, k ∈ {1, …, n }}, and define En = {xi = 1, xi + xj = xk, xi · xj = xk: i, j, k ∈ {1, …, n }}. We discuss two conjectures. If a system S ⊆ En is consistent over ℝ, then S has a real solution which consists of numbers whose absolute values belong to [0, 22n –2]. If a system S ⊆ Wn is consistent over G, then S has a solution ∈ n in which |xj| ≤ 2n –1 for each j.
  •  476
    Hilbert's 10th Problem for solutions in a subring of Q
    with Agnieszka Peszek
    Scientific Annals of Computer Science 29 (1): 101-111. 2019.
    Yuri Matiyasevich's theorem states that the set of all Diophantine equations which have a solution in non-negative integers is not recursive. Craig Smoryński's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. Let R be a subring of Q with or without 1. By H_{10}(R), we denote the problem of whether there exists an algorithm which for any given Diophantine equation with integer coefficients, …Read more
  •  461
    K denotes both the knowledge predicate satisfied by every currently known theorem and the finite set of all currently known theorems. The set K is time-dependent, publicly available, and contains theorems both from formal and constructive mathematics. Any theorem of any mathematician from past or present forever belongs to K. Mathematical statements with known constructive proofs exist in K separately and form the set K_c⊆K. We assume that mathematical sets are atemporal entities. They exist for…Read more