•  122
    All acknowledged proofs of the Four Colour Theorem (4CT) are computerdependent. They appeal to the existence, and manual identification, of an ‘unavoidable’ set containing a sufficient number of explicitly defined configurations—each evidenced only by a computer as ‘reducible’—such that at least one of the configurations must occur in any chromatically distinguished, putatively minimal, planar map. For instance, Appel and Haken ‘identified’ 1,482 such configurations in their 1977, computer-depen…Read more
  •  146
    All accepted proofs of the Four Colour Theorem (4CT) are computer-dependent; and appeal to the existence, and manual identification, of an ‘unavoidable’ set containing a sufficient number of explicitly defined configurations—each evidenced only by a computer as ‘reducible’—such that at least one of the configurations must occur in any chromatically distinguished, minimal, planar map. For instance, Appel and Haken ‘identified’ 1,482 such configurations in their 1977, computer-dependent, proof of …Read more
  •  151
    Although the Four Colour Theorem is passe, we give an elementary pre-formal proof that transparently illustrates why four colours suffice to chromatically differentiate any set of contiguous, simply connected and bounded, planar spaces; by showing that there is no minimal 4-coloured planar map M. We note that such a pre-formal proof of the Four Colour Theorem highlights the significance of differentiating between: (a) Plato's knowledge as justified true belief, which seeks a formal proof in a fi…Read more
  •  296
    Conventional wisdom dictates that proofs of mathematical propositions should be treated as necessary, and sufficient, for entailing `significant' mathematical truths only if the proofs are expressed in a---minimally, deemed consistent---formal mathematical theory in terms of: * Axioms/Axiom schemas * Rules of Deduction * Definitions * Lemmas * Theorems * Corollaries. Whilst Andrew Wiles' proof of Fermat's Last Theorem FLT, which appeals essentially to geometrical properties of real and complex n…Read more
  •  175
    Andrew Wiles' analytic proof of Fermat's Last Theorem FLT, which appeals to geometrical properties of real and complex numbers, leaves two questions unanswered: (i) What technique might Fermat have used that led him to, even if only briefly, believe he had `a truly marvellous demonstration' of FLT? (ii) Why is x^n+y^n=z^n solvable only for n<3? In this inter-disciplinary perspective, we offer insight into, and answers to, both queries; yielding a pre-formal proof of why FLT can be treated as a t…Read more
  •  1140
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA …Read more
  •  460
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA …Read more
  •  200
    We argue the thesis that if (1) a physical process is mathematically representable by a Cauchy sequence; and (2) we accept that there can be no infinite processes, i.e., nothing corresponding to infinite sequences, in natural phenomena; then (a) in the absence of an extraneous, evidence-based, proof of `closure' which determines the behaviour of the physical process in the limit as corresponding to a `Cauchy' limit; (b) the physical process must tend to a discontinuity (singularity) which has no…Read more
  •  1269
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive app…Read more
  •  209
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to s…Read more
  •  233
    We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions…Read more