•  3
    A reference genome for common bean and genome-wide analysis of dual domestications
    with J. Schmutz, P. E. McClean, S. Mamidi, G. A. Wu, S. B. Cannon, J. Grimwood, J. Jenkins, S. Shu, Q. Song, C. Chavarro, M. Torres-Torres, V. Geffroy, S. M. Moghaddam, D. Gao, B. Abernathy, K. Barry, M. Blair, M. A. Brick, M. Chovatia, P. Gepts, D. M. Goodstein, M. Gonzales, U. Hellsten, D. L. Hyten, G. Jia, J. D. Kelly, D. Kudrna, R. Lee, Richard M. M. S., P. N. Miklas, J. M. Osorno, V. Thareau, C. A. Urrea, M. Wang, Y. Yu, M. Zhang, R. A. Wing, P. B. Cregan, D. S. Rokhsar, and S. A. Jackson
    Common bean is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differe…Read more
  •  3
    Conversion of Amazon rainforest to agriculture alters community traits of methane-cycling organisms
    with K. M. Meyer, A. M. Klein, K. Nüsslein, S. G. Tringe, B. S. Mirza, J. M. Tiedje, and B. J. M. Bohannan
    © 2017 John Wiley & Sons LtdLand use change is one of the greatest environmental impacts worldwide, especially to tropical forests. The Amazon rainforest has been subject to particularly high rates of land use change, primarily to cattle pasture. A commonly observed response to cattle pasture establishment in the Amazon is the conversion of soil from a methane sink in rainforest, to a methane source in pasture. However, it is not known how the microorganisms that mediate methane flux are altered…Read more