Mathematics seems to have a special status when compared to other areas of human knowledge. This special status is linked with the role of proof. Mathematicians often believe that this type of argumentation leaves no room for errors and unclarity. Philosophers of mathematics have differentiated between absolutist and fallibilist views on mathematical knowledge, and argued that these views are related to whether one looks at mathematics-in-the-making or finished mathematics. In this paper we take…
Read moreMathematics seems to have a special status when compared to other areas of human knowledge. This special status is linked with the role of proof. Mathematicians often believe that this type of argumentation leaves no room for errors and unclarity. Philosophers of mathematics have differentiated between absolutist and fallibilist views on mathematical knowledge, and argued that these views are related to whether one looks at mathematics-in-the-making or finished mathematics. In this paper we take a closer look at mathematical practice, more precisely at the publication process in mathematics. We argue that the apparent view that mathematical literature, given the special status of mathematics, is highly reliable is too naive. We will discuss several problems in the publication process that threaten this view, and give several suggestions on how this could be countered.Las matemáticas parecen tener un estatuto especial cuando se las compara con otras áreas del conocimiento humano. Este estatuto especial está conectado con el papel de la demostración. Los matemáticos creen con frecuencia que este tipo de argumentos no deja margen para el error o la falta de claridad. Los filósofos de la matemática han distinguido entre una concepción absolutista y una falibilista del conocimiento matemático, argumentando que estas concepciones están relacionadas con una consideración de las matemáticas-en-proceso o en tanto que matemáticas ya hechas. En este artículo examinamos más de cerca la práctica matemática, más en concreto el proceso de publicación en matemáticas. Argumentaremos que la idea preconcebida de que la literatura matemática, dado el estatuto especial de las matemáticas, es altamente fiable, es demasiado ingenua. Discutiremos algunos problemas del proceso de edición que amenazan esta visión y haremos algunas sugerencias sobre cómo enfrentarlos.