Causal reductionism is the widespread assumption that there is no room for additional causes once we have accounted for all elementary mechanisms within a system. Due to its intuitive appeal, causal reductionism is prevalent in neuroscience: once all neurons have been caused to fire or not to fire, it seems that causally there is nothing left to be accounted for. Here, we argue that these reductionist intuitions are based on an implicit, unexamined notion of causation that conflates causation wi…
Read moreCausal reductionism is the widespread assumption that there is no room for additional causes once we have accounted for all elementary mechanisms within a system. Due to its intuitive appeal, causal reductionism is prevalent in neuroscience: once all neurons have been caused to fire or not to fire, it seems that causally there is nothing left to be accounted for. Here, we argue that these reductionist intuitions are based on an implicit, unexamined notion of causation that conflates causation with prediction. By means of a simple model organism, we demonstrate that causal reductionism cannot provide a complete and coherent account of ‘what caused what’. To that end, we outline an explicit, operational approach to analyzing causal structures.