We present a new framework for combining logic with probability, and demonstrate the application of this framework to breast cancer prognosis. Background knowledge concerning breast cancer prognosis is represented using logical arguments. This background knowledge and a database are used to build a Bayesian net that captures the probabilistic relationships amongst the variables. Causal hypotheses gleaned from the Bayesian net in turn generate new arguments. The Bayesian net can be queried to hel…
Read moreWe present a new framework for combining logic with probability, and demonstrate the application of this framework to breast cancer prognosis. Background knowledge concerning breast cancer prognosis is represented using logical arguments. This background knowledge and a database are used to build a Bayesian net that captures the probabilistic relationships amongst the variables. Causal hypotheses gleaned from the Bayesian net in turn generate new arguments. The Bayesian net can be queried to help decide when one argument attacks another. The Bayesian net is used to perform the prognosis, while the argumentation framework is used to provide a qualitative explanation of the prognosis.