A well-known result, going back to the twenties, states that, under some reasonable assumptions, any logic can be characterized as the set of formulas satisfied by a matrix 〈,F〉, whereis an algebra of the appropriate type, andFa subset of the domain of, called the set of designated elements. In particular, every quasi-classical modal logic—a set of modal formulas, containing the smallest classical modal logicE, which is closed under the inference rules of substitution and modus ponens—is charact…

Read moreA well-known result, going back to the twenties, states that, under some reasonable assumptions, any logic can be characterized as the set of formulas satisfied by a matrix 〈,F〉, whereis an algebra of the appropriate type, andFa subset of the domain of, called the set of designated elements. In particular, every quasi-classical modal logic—a set of modal formulas, containing the smallest classical modal logicE, which is closed under the inference rules of substitution and modus ponens—is characterized by such a matrix, wherenow is a modal algebra, andFis a filter of. If the modal logic is in fact normal, then we can do away with the filter; we can study normal modal logics in the setting of varieties of modal algebras. This point of view was adopted already quite explicitly in McKinsey and Tarski [8]. The observation that the lattice of normal modal logics is dually isomorphic to the lattice of subvarieties of a variety of modal algebras paved the road for an algebraic study of normal modal logics. The algebraic approach made available some general results from Universal Algebra, notably those obtained by Jónsson [6], and thereby was able to contribute new insights in the realm of normal modal logics [2], [3], [4], [10].The requirement that a modal logic be normal is rather a severe one, however, and many of the systems which have been considered in the literature do not meet it. For instance, of the five celebrated modal systems, S1–S5, introduced by Lewis, S4 and S5 are the only normal ones, while only SI fails to be quasi-classical. The purpose of this paper is to generalize the algebraic approach so as to be applicable not just to normal modal logics, but to quasi-classical modal logics in general.