• Gualtiero Piccinini presents a systematic and rigorous philosophical defence of the computational theory of cognition. His view posits that cognition involves neural computation within multilevel neurocognitive mechanisms, and includes novel ideas about ontology, functions, neural representation, neural computation, and consciousness.
  •  16
    Composition as Trans-Scalar Identity
    with Alexander Schumm and Waldmar Rohloff
    We define mereologically invariant composition as the relation between a whole object and its parts when the object retains the same parts during a time interval. We argue that mereologically invariant composition is identity between a whole and its parts taken collectively. Our reason is that parts and wholes are equivalent measurements of a portion of reality at different scales in the precise sense employed by measurement theory. The purpose of these scales is the numerical representation of …Read more
  •  128
    Towards a Cognitive Neuroscience of Intentionality
    Minds and Machines 28 (1): 119-139. 2018.
    We situate the debate on intentionality within the rise of cognitive neuroscience and argue that cognitive neuroscience can explain intentionality. We discuss the explanatory significance of ascribing intentionality to representations. At first, we focus on views that attempt to render such ascriptions naturalistic by construing them in a deflationary or merely pragmatic way. We then contrast these views with staunchly realist views that attempt to naturalize intentionality by developing theorie…Read more
  •  57
    Conceived This Way: Innateness Defended
    Philosophers' Imprint 18. 2018.
    We propose a novel account of the distinction between innate and acquired biological traits: biological traits are innate to the degree that they are caused by factors intrinsic to the organism at the time of its origin; they are acquired to the degree that they are caused by factors extrinsic to the organism. This account borrows from recent work on causation in order to make rigorous the notion of quantitative contributions to traits by different factors in development. We avoid the pitfalls o…Read more
  •  24
    The Evolution of Psychological Altruism
    with Armin Schulz
    Philosophy of Science 85 (5): 1054-1064. 2018.
    We argue that there are two different kinds of altruistic motivation: classical psychological altruism, which generates ultimate desires to help other organisms at least partly for those organisms’ sake, and nonclassical psychological altruism, which generates ultimate desires to help other organisms for the sake of the organism providing the help. We then argue that classical psychological altruism is adaptive if the desire to help others is intergenerationally reliable and, thus, need not be l…Read more
  •  37
    According to pancomputationalism, all physical systems – atoms, rocks, hurricanes, and toasters – perform computations. Pancomputationalism seems to be increasingly popular among some philosophers and physicists. In this paper, we interpret pancomputationalism in terms of computational descriptions of varying strength—computational interpretations of physical microstates and dynamics that vary in their restrictiveness. We distinguish several types of pancomputationalism and identify essential fe…Read more
  •  100
    Neural Representations Observed
    with Eric Thomson
    Minds and Machines 28 (1): 191-235. 2018.
    The historical debate on representation in cognitive science and neuroscience construes representations as theoretical posits and discusses the degree to which we have reason to posit them. We reject the premise of that debate. We argue that experimental neuroscientists routinely observe and manipulate neural representations in their laboratory. Therefore, neural representations are as real as neurons, action potentials, or any other well-established entities in our ontology.
  •  34
    Mechanistic Abstraction
    Philosophy of Science 83 (5): 686-697. 2016.
    We provide an explicit taxonomy of legitimate kinds of abstraction within constitutive explanation. We argue that abstraction is an inherent aspect of adequate mechanistic explanation. Mechanistic explanations—even ideally complete ones—typically involve many kinds of abstraction and therefore do not require maximal detail. Some kinds of abstraction play the ontic role of identifying the specific complex components, subsets of causal powers, and organizational relations that produce a suitably g…Read more
  •  210
    The Resilience of Computationalism
    Philosophy of Science 77 (5): 852-861. 2010.
    Roughly speaking, computationalism says that cognition is computation, or that cognitive phenomena are explained by the agent‘s computations. The cognitive processes and behavior of agents are the explanandum. The computations performed by the agents‘ cognitive systems are the proposed explanans. Since the cognitive systems of biological organisms are their nervous 1 systems (plus or minus a bit), we may say that according to computationalism, the cognitive processes and behavior of organisms ar…Read more
  •  25
    Symbols, strings, and spikes
    Unpublished. 2005.
    I argue that neural activity, strictly speaking, is not computation. This is because computation, strictly speaking, is the processing of strings of symbols, and neuroscience shows that there are no neural strings of symbols. This has two consequences. On the one hand, the following widely held consequences of computationalism must either be abandoned or supported on grounds independent of computationalism: (i) that in principle we can capture what is functionally relevant to neural processe…Read more
  •  223
    Are Prototypes and Exemplars Used in Distinct Cognitive Processes?
    with James Virtel
    Behavioral and Brain Sciences 33 (2-3): 226-227. 2010.
    Machery’s argument that concepts split into different kinds is bold and inspiring but not fully persuasive. We will focus on the lack of evidence for the fourth tenet of Machery’s..
  •  348
    Functionalism, Computationalism, & Mental States
    Studies in the History and Philosophy of Science 35 (4): 811-833. 2004.
    Some philosophers have conflated functionalism and computationalism. I reconstruct how this came about and uncover two assumptions that made the conflation possible. They are the assumptions that (i) psychological functional analyses are computational descriptions and (ii) everything may be described as performing computations. I argue that, if we want to improve our understanding of both the metaphysics of mental states and the functional relations between them, we should reject these assumpti…Read more
  •  394
    The ontology of creature consciousness: A challenge for philosophy
    Behavioral and Brain Sciences 30 (1): 103-104. 2007.
    I appeal to Merker's theory to motivate a hypothesis about the ontology of consciousness: Creature consciousness is (at least partially) constitutive of phenomenal consciousness. Rather than elaborating theories of phenomenal consciousness couched solely in terms of state consciousness, as philosophers are fond of doing, a correct approach to phenomenal consciousness should begin with an account of creature consciousness.
  •  154
    Heterophenomenology is a third-person methodology proposed by Daniel Dennett for using first-person reports as scientific evidence. I argue that heterophenomenology can be improved by making six changes: (i) setting aside consciousness, (ii) including other sources of first-person data besides first-person reports, (iii) abandoning agnosticism as to the truth value of the reports in favor of the most plausible assumptions we can make about what can be learned from the data, (iv) interpreting fir…Read more
  •  218
    The Church–Turing Thesis (CTT) is often employed in arguments for computationalism. I scrutinize the most prominent of such arguments in light of recent work on CTT and argue that they are unsound. Although CTT does nothing to support computationalism, it is not irrelevant to it. By eliminating misunderstandings about the relationship between CTT and computationalism, we deepen our appreciation of computationalism as an empirical hypothesis.
  •  359
    Defending or attacking either functionalism or computationalism requires clarity on what they amount to and what evidence counts for or against them. My goalhere is not to evaluatc their plausibility. My goal is to formulate them and their relationship clearly enough that we can determine which type of evidence is relevant to them. I aim to dispel some sources of confusion that surround functionalism and computationalism. recruit recent philosophical work on mechanisms and computation to shed li…Read more
  •  118
    Computationalism says that brains are computing mechanisms, that is, mechanisms that perform computations. At present, there is no consensus on how to formulate computationalism precisely or adjudicate the dispute between computationalism and its foes, or between different versions of computationalism. An important reason for the current impasse is the lack of a satisfactory philosophical account of computing mechanisms. The main goal of this dissertation is to offer such an account.
    I also belie…
    Read more
  •  203
    Splitting concepts
    with Sam Scott
    Philosophy of Science 73 (4): 390-409. 2006.
    A common presupposition in the concepts literature is that concepts constitute a sin- gular natural kind. If, on the contrary, concepts split into more than one kind, this literature needs to be recast in terms of other kinds of mental representation. We offer two new arguments that concepts, in fact, divide into different kinds: (a) concepts split because different kinds of mental representation, processed independently, must be posited to explain different sets of relevant phenomena; (b) conce…Read more
  •  245
    Get the Latest Upgrade: Functionalism 6.3.1
    Philosophia Scientae 17 (2): 135-149. 2013.
    Functionalism is a popular solution to the mind–body problem. It has a number of versions. We outline some of the major releases of functionalism, listing some of their important features as well as some of the bugs that plagued these releases. We outline how different versions are related. Many have been pessimistic about functionalism’s prospects, but most criticisms have missed the latest upgrades. We end by suggesting a version of functionalism that provides a complete account of the mind
  •  122
    Introspection used to be excluded from science because it isn?t public--for any question about mental states, only the person whose states are in question can answer by introspecting. However, we often use introspective reports to gauge each other?s minds, and contemporary psychologists generate data from them. I argue that some uses of introspection are as public as any scientific method
  •  175
    Epistemic divergence and the publicity of scientific methods
    Studies in History and Philosophy of Science Part A 34 (3): 597-612. 2003.
    Epistemic divergence occurs when different investigators give different answers to the same question using evidence-collecting methods that are not public. Without following the principle that scientific methods must be public, scientific communities risk epistemic divergence. I explicate the notion of public method and argue that, to avoid the risk of epistemic divergence, scientific communities should (and do) apply only methods that are public.
  •  75
    Is Consciousness a Spandrel?
    with Zack Robinson and Corey J. Maley
    Journal of the American Philosophical Association 1 (2): 365--383. 2015.
  •  268
    Computationalism in the Philosophy of Mind
    Philosophy Compass 4 (3): 515-532. 2009.
    Computationalism has been the mainstream view of cognition for decades. There are periodic reports of its demise, but they are greatly exaggerated. This essay surveys some recent literature on computationalism. It concludes that computationalism is a family of theories about the mechanisms of cognition. The main relevant evidence for testing it comes from neuroscience, though psychology and AI are relevant too. Computationalism comes in many versions, which continue to guide competing research p…Read more
  •  223
    Alan Turing and the mathematical objection
    Minds and Machines 13 (1): 23-48. 2003.
    This paper concerns Alan Turing’s ideas about machines, mathematical methods of proof, and intelligence. By the late 1930s, Kurt Gödel and other logicians, including Turing himself, had shown that no finite set of rules could be used to generate all true mathematical statements. Yet according to Turing, there was no upper bound to the number of mathematical truths provable by intelligent human beings, for they could invent new rules and methods of proof. So, the output of a human mathematician, …Read more
  •  169
    Some Neural Networks Compute, Others Don't
    Neural Networks 21 (2-3): 311-321. 2008.
    I address whether neural networks perform computations in the sense of computability theory and computer science. I explicate and defend
    the following theses. (1) Many neural networks compute—they perform computations. (2) Some neural networks compute in a classical way.
    Ordinary digital computers, which are very large networks of logic gates, belong in this class of neural networks. (3) Other neural networks
    compute in a non-classical way. (4) Yet other neural networks do not perform computations.…


    Read more